Actes du colloque du Groupe de Didactique des Mathématiques

Colloque GDM 2003

Portée et limites de la notion d'autonomie en mathématiques

22 et 23 avril 2003
Université de Sherbrooke
Campus de Longueuil
Comité organisateur

Hassane Squalli, responsable (Université de Sherbrooke)
Claudine Mary (Université de Sherbrooke)
Pascale Blouin (Université du Québec à Trois Rivières)
France Caron (Université de Montréal)
TABLE DES MATIÈRES

THÈME DU COLLOQUE
Portée et limites de la notion d’autonomie en mathématiques .. 3

CONSTANCE KAMII
Le développement de l’autonomie et l’enseignement/apprentissage de l’arithmétique 5

SYLVINE SCHMIDT
L’autonomie de l’enfant dans la théorie de Vygotski ... 19

DIANE GAUTHIER
Les paramètres didactiques essentiels au développement de l’autonomie des élèves ayant une déficience intellectuelle intégrés dans les classes ordinaires du primaires. 43

FRANCE CARON
Les technologies dans les cours de mathématiques : .. 58

catalyseur ou poudre aux yeux? ... 58

MARIE-PIER MORIN
Quelques réflexions sur le développement de l’autonomie professionnelle en mathématiques chez les futurs maîtres du primaire... 69

MÉLANIE ODIERNA
Lever une indétermination : ... 81

Un pas vers le développement d’une autonomie en mathématiques? 81

MIREILLE SABOYA, NADINE BEDNARZ
Élaboration d’une intervention en mathématiques auprès d’une élève en difficultés d’apprentissage : développement d’une autonomie à l’égard des graphiques. 93

IZABELLA OLIVEIRA
L’enseignement de la proportion simple au Brésil : stratégies avant et après l’enseignement formel .. 105

BELKHOJIA MAHA
«Compétences» à développer à l’école du point de vue de la visualisation en géométrie dans trois et deux dimensions .. 113

KALIFA TRAORE
Savoirs mathématiques traditionnels au Burkina Faso : ... 118

L’arithmétique au quotidien ... 118

JÉRÔME PROULX
Explications orales des futurs enseignants en classe de mathématiques au secondaire : une étude de cas .. 122

Table ronde ... 128

NADINE BEDNARZ
Digression sur la notion d’autonomie .. 128

RENNÉE CARON
Développer l’autonomie de l’élève à l’école et en mathématiques, est-ce possible? 134

LISTE DES PARTICIPANTS AU COLLOQUE GDM-2003 ... 139
Thème du colloque

Portée et limites de la notion d'autonomie en mathématiques

L'autonomie est le but ultime de l'éducation, a dit Piaget. Ce but est largement repris par le nouveau Programme de l'école québécoise, comme en attestent les nombreuses références au terme autonomie dans le texte de présentation. Cette idée d’autonomie y est présente, autant comme but à atteindre pour chaque élève que comme moyen pédagogique d’y parvenir. Plus l’élève avance en âge ou progresse dans ses apprentissages, plus il est appelé à faire preuve d’autonomie, et ce dans l'apprentissage de toutes les disciplines. À la fin de l’école obligatoire, il doit agir comme « citoyen libre, autonome et responsable » (Ministère de l’Éducation du Québec).

Toutefois, si dans le monde d’aujourd’hui, les mathématiques sont omniprésentes, sans toujours être très visibles, quand peut-on dire que le citoyen, en tant qu’acteur social et économique éclairé et en tant qu'utilisateur des mathématiques, fait preuve d’autonomie en mathématiques ? Comment l’éducation mathématique obligatoire peut-elle contribuer à la formation du citoyen autonome ? Dans le contexte actuel, est-il raisonnable de croire que les changements apportés au curriculum mathématique favorisent l'atteinte d'un niveau d'autonomie acceptable ? En particulier, l’utilisation des technologies s’inscrit-elle toujours dans le développement de cette autonomie ?

Aussi, si le développement de l'autonomie est visé dans l'apprentissage de toutes les disciplines, comment définir la notion d'autonomie en mathématiques ? Certains avancent qu'une personne autonome en mathématiques est une personne préparée à penser formellement les situations rencontrées. Est-ce didactiquement possible avec 11 ans de scolarité obligatoire ?

Les études sur le développement de l'autonomie intellectuelle en mathématiques suggèrent que celle-ci se développe en interaction avec les autres et qu'elle est grandement stimulée lorsque l’enseignant favorise la dévolution sur le plan collectif de la responsabilité de la validation en guidant au sein de la classe le développement de critères et de mécanismes de validation (voir la notion de « community of validators » de Cobb). Dans cette perspective, quelles seraient les caractéristiques d’une classe de mathématiques où les élèves font preuve d’autonomie ? Existerait-il une autonomie collective et une autonomie individuelle ? Quel rôle devrait jouer l’enseignant pour favoriser le développement de l’autonomie collective et des autonomies individuelles lors de la définition des situations d'enseignement-apprentissage et des modalités de validation et d'institutionnalisation ? Les recherches en didactique des mathématiques offrent-elles des éléments de réponse à ces questions ?

Aujourd’hui, le savoir est appréhendé comme quelque chose de diversifié et de multiple. Il est évalué en fonction du degré de sa validité et de sa pertinence par rapport à la question examinée. Ce point de vue appelle à un relativisme épistémologique et incite à se questionner sur les choix des savoirs à enseigner. Selon Kamii, lorsqu’on apprend aux élèves un algorithme conventionnel on leur apprend l’hétéronomie et non l’autonomie puisqu’on leur apprend à se conformer à des règles définies préalablement par des adultes. Comment favoriser le développement de l’autonomie tout en visant l’apprentissage de savoirs socialement partagés ? La notion d’autonomie en mathématiques est-elle pertinente d’un point de vue didactique ? Peut-on en faire l’économie ? Quelle différence existe-t-il entre être autonome en mathématiques et être compétent en mathématiques ?
Pour les fins du colloque, nous vous proposons d'examiner la problématique de l'autonomie en mathématiques sous divers aspects :
- du point de vue des mathématiques,
- du point de vue des élèves,
- du point de vue de l'enseignement, et éventuellement,
- du point de vue de la formation à l'enseignement.
CONFÉRENCES PLENIÈRES

Constance Kamii
Université d'Alabama à Birmingham

Le développement de l'autonomie et l'enseignement/apprentissage de l'arithmétique

Résumé : Dans le sens courant, le terme "autonomie" signifie le droit de prendre des décisions, mais dans la théorie piagetienne, "autonomie" veut dire la capacité de se gouverner soi-même aussi bien dans le domaine moral que dans le domaine intellectuel. Une personne autonome est capable de prendre en considération tous les facteurs pertinents à la prise d'une décision de ce qui est moralement correct ou incorrect, et de ce qui est vrai ou faux.
Pour Piaget, le but ultime de l'éducation consiste à former des individus capables d'autonomies morale et intellectuelle. Des exemples de situations en classe sont présentés pour illustrer l'enseignement/apprentissage qui découle de ce but.

J'aimerais d'abord clarifier ce que Piaget entendait par "autonomie" et "l'autonomie en tant que but de l'éducation" et ensuite parler de l'enseignement de l'arithmétique. Comme vous le savez peut-être, j'ai commencé en 1980 à Chicago à essayer de vérifier l'hypothèse selon laquelle il est possible d'"enseigner" l'arithmétique en première année sans l'enseigner dans le sens traditionnel. Cette hypothèse fut largement confirmée, et j'ai poursuivi mon étude progressivement dans les autres années du primaire. Les résultats ont été tout aussi probants qu'en première année. Ainsi, en deuxième année les enfants inventèrent leurs propres procédures pour additionner des nombres plus grands. En troisième et en quatrième années, ils inventèrent des méthodes pour les calculs de multiplication et de division. J'ai malheureusement dû abandonner ces recherches parce que beaucoup de parents apprenaient aux enfants à la maison les algorithmes conventionnels utilisant les techniques d'"emprunt" et de "retenue". Comme cet apprentissage est néfaste au développement du raisonnement numérique chez l'enfant, il est inutile de faire des expériences avec ces enfants qui ne réfléchissent plus. Je reviendrai plus tard sur le problème de l'apprentissage des algorithmes conventionnels. Auparavant, j'aimerais discuter de ce que Piaget entendait par "autonomie."
1. L'autonomie: le but ultime de l'éducation
1.1. Ce que Piaget entendait par "autonomie"
Dans le sens courant, "autonomie" signifie un droit, comme on l'entend quand on dit "l'autonomie des Palestiniens." Mais dans la théorie piagétienne, "autonomie" veut dire la capacité de se gouverner soi-même dans le domaine moral aussi bien que dans le domaine intellectuel. Une personne autonome est capable de prendre en considération tous les facteurs pertinents pour décider, indépendamment des punitions et des récompenses, de ce qui est moralement correct ou incorrect, et de ce qui est vrai ou faux dans le domaine intellectuel.

1.1.1. L'autonomie morale
Un exemple frappant de l'autonomie morale fut la lutte de Martin Luther King pour les droits civils des noirs. En tenant compte de tous les facteurs pertinents, King décida que les lois discriminatoires étaient injustes et immorales. Convaincu de la nécessité d'abolir ces lois, il a commencé à se battre contre elles, nonobstant la brutalité de la police à son encontre, ses multiples emprisonnements, et les menaces d'assassinats utilisées pour le contraindre à arrêter son combat. Les personnes moralement autonomes ne sont pas influencées par les punitions, ni par les récompenses.
Le contraire de l'autonomie est l'hétéronomie, qui signifie "être gouverné par quelqu'un d'autre". Un exemple de l'hétéronomie morale est le cas des personnes travaillant dans des entreprises de tabac qui ont caché les preuves concernant les effets néfastes des cigarettes. La plupart des adultes sont gouvernés par leurs supérieurs, qui les récompensent souvent pour des conduites immorales.
Dans sa recherche, Piaget (1932) demanda à des enfants âgés de 6 à 14 ans s'il était plus grave de mentir à un adulte ou à un autre enfant. Les jeunes enfants, hétéronomes, répondirent qu'il était plus grave de mentir à un adulte. Quand on leur demandait pourquoi, ils disaient que les adultes peuvent savoir si ce qu'on leur dit est vrai ou faux. Les enfants plus âgés, au contraire, tendaient à répondre qu'il est quelquefois nécessaire de mentir aux adultes, mais que c'est "moche" de mentir à d'autres enfants. C'est un exemple d'autonomie morale. Pour les gens autonomes, il est mal de mentir, indépendamment du système de récompense ou du risque d'être pris.
À la base, tous les enfants sont dépendants et hétéronomes. Idéalement, l'enfant devient de plus en plus autonome et, parallèlement, de moins en moins hétéronome au fur et à mesure de son
développement. En d'autres termes, dans la mesure où il devient capable de se diriger lui-même, l'enfant est moins dirigé par les autres.

En réalité, la plupart des adultes ne se développent pas de cette façon idéale. La grande majorité cesse de se développer à un bas niveau. Piaget (1972) remarqua que rares sont les adultes qui ont développé l’autonomie morale. Cette observation est facilement confirmée dans notre vie quotidienne: les journaux regorgent d'histoires de corruption politique, de vols, d'attaques, et de meurtres.

La question importante pour les enseignants et les parents est de savoir ce qui fait que certains enfants deviennent des adultes moralement autonomes. À cette question, Piaget répondait que les adultes renforcent l'hétéronomie naturelle de l'enfant en recourant à des récompenses et à des punitions, alors qu'ils stimulent le développement de l'autonomie en échangeant des points de vue avec les enfants.

Lorsqu'un enfant ment, l'adulte peut par exemple le priver de dessert. Il peut aussi s'abstenir de le punir et, à la place, le regarder droit dans les yeux avec beaucoup d'étonnement et d'affection en lui disant: "Je ne peux vraiment pas croire ce que tu racontes parce que … J'aimerais que tu ailles dans ta chambre pour réfléchir à ce que tu pourrais faire différemment la prochaine fois". Une telle réponse invite l'enfant à réfléchir et encourage l'échange de points de vue qui contribue au développement de l’autonomie de l’enfant. L'enfant à qui on fait constater que l'adulte ne peut pas le croire est motivé à se demander ce qu'il doit faire pour qu'on lui fasse confiance. L'enfant qui est élevé en vivant maintes situations de ce genre peut, avec le temps, construire lui-même la conviction qu'il vaut mieux, dans une relation à long terme avec les autres, se comporter honnêtement et sans se mentir les uns aux autres.

En général, les punitions mènent à trois conséquences possibles. La plus commune est le calcul des risques. L'enfant qui est puni répétera la même action, mais essayera d'éviter d'être pris. L'enfant décide souvent de continuer, car même s'il est pris, il sait qu'il ne risque pas grand chose. La deuxième conséquence est le contraire de la première: l'obéissance aveugle. Certains enfants soumis deviennent de parfaits conformistes parce que le conformisme leur assure sécurité et respectabilité. Lorsqu'ils deviennent entièrement conformistes, les enfants n'ont plus de décisions à prendre, tout ce qu'ils ont à faire, c'est obéir. La troisième conséquence est la révolte. Certains enfants sont de petits anges pendant des années, puis décident à un moment donné qu'ils sont fatigués de faire plaisir à leurs parents et à leurs enseignants et que le moment est venu de
vivre pour eux-mêmes. Ils peuvent alors s'engager dans des comportements caractéristiques de la délinquance.

Piaget était assez réaliste pour dire que dans la vie de tous les jours, il est impossible d'éviter la contrainte. Cependant, il faisait une distinction importante entre punition et sanction par réciprocité. Priver un enfant de dessert parce qu'il a menti est un exemple de punition, étant donné que la relation entre un dessert et un mensonge est totalement arbitraire. Dire à l'enfant que nous ne pouvons croire ce qu'il a raconté est un exemple de sanction par réciprocité. Les sanctions par réciprocité sont directement reliées à l'acte auquel nous souhaitons mettre un terme et elles ont pour effet d'inciter l'enfant à se construire des règles de conduite en coordonnant des points de vue. D'autres exemples de sanctions par réciprocité – tels que l'exclusion du groupe et la réparation – sont signalés dans Le jugement moral chez l’enfant (Piaget, 1932).

Les behavioristes, et beaucoup d'autres, pensent que les punitions sont négatives et que les récompenses sont agréables et positives. Mais les récompenses ne rendent pas l'enfant plus autonome que les punitions. L'enfant qui aide ses parents seulement dans le but de recevoir de l'argent et celui qui remplit des fiches uniquement dans le but de recevoir une bonne note, sont aussi hétéronomes que l'enfant qui se comporte bien strictement dans le but d'éviter une punition.

Le constructivisme de Piaget concernant l'acquisition des valeurs morales est fondamentalement différent des théories traditionnelles et empiristes. Selon ces théories, l'enfant acquiert les valeurs morales en les intérieurisant à partir de son environnement. Par contre, selon Piaget, l'enfant acquiert ces valeurs en les construisant de l'intérieur à travers ses interactions avec d'autres personnes qui sont proches et importantes pour lui. Tous les criminels savent qu'il ne faut pas voler et mentir. Ils ont intérieurisé ces valeurs, mais l'intériorisation est superficielle et ne mène pas aux convictions profondes. La conviction morale de Martin Luther King a été acquise par construction de l'intérieur, et c'était cette conviction qui lui a donné le courage de continuer son combat.

1.1.2. L'autonomie intellectuel

J'ai longuement parlé de l'autonomie morale, et j'aimerais maintenant passer à l'autonomie intellectuelle. Dans le domaine intellectuel "autonomie" signifie la capacité de décider entre ce qui est vrai ou faux en prenant en considération tous les facteurs pertinents. Comme exemple de
l'autonomie intellectuelle, on peut citer l'histoire de Copernic, à qui l'on attribue la théorie de la position centrale du soleil. Étant donné que tout le monde croyait que le soleil tournait autour de la terre, on le railla et le méprisa. Toutefois, Copernic se montra suffisamment autonome pour rester convaincu de la validité de son idée. Plus généralement, une personne intellectuellement hétéronome croit tout ce qu'on lui dit (y compris les conclusions illogiques, slogans et propagandes) sans se poser de questions.

Malheureusement à l'école, les enfants ne sont pas encouragés à réfléchir d'une façon autonome. Les enseignants utilisent des récompenses et des punitions dans le domaine intellectuel pour encourager les enfants à donner des réponses "justes." Un exemple de cette affirmation est l'utilisation des fiches. Si un enfant de la première année du primaire écrit que "4 + 4 = __," la plupart des enseignants marquent cette réponse comme étant fausse. Une meilleure réaction est de ne pas corriger l'enfant et de demander à la place si les autres sont d'accord. L'échange de points de vue entre les enfants stimule la réflexion critique, laquelle les mène à un niveau supérieur de raisonnement.

1.2. L'autonomie comme but de l'éducation

La figure 1.2 montre la relation entre l'autonomie en tant que but de l'éducation et les buts de la plupart des éducateurs et du public. La partie hachurée dans le cercle de droite représente les buts implicites de l'éducation d'aujourd'hui.

![Figure 1.2. La relation entre l’autonomie en tant que but de l’éducation et les buts de la plupart des éducateurs du public](image)

Cette éducation nous a demandé beaucoup de mémorisation pour passer d'un examen à un autre. Tous ceux d'entre nous qui ont connu un certain succès à l'école y sont parvenu en mémorisant un grand nombre de mots sans les comprendre. Cette partie du cercle de droite comprend aussi l'hétéronomie morale que l'école renforce en utilisant des punitions et des récompenses. De ce type d'éducation sont issus les personnes travaillant dans les entreprises de tabac auxquelles j’ai
fait référence et les enfants circulant dans les couloirs des écoles qui vendent ou qui achètent des
drogues en cachette.
Une étiquette plus adéquate pour ce cercle de droite aurait été "Hétéronomie" (en tant que but de
l'éducation), mais je n'ai pas utilisé cette étiquette parce que les enseignants d'aujourd'hui
n'essayaient pas volontairement de rendre leurs élèves plus hétéronomes. La plupart des
enseignants n'ont jamais entendu parler d'autonomie ou d'hétéronomie et manipulent les enfants
avec des récompenses et des punitions sans se rendre compte que c'est ainsi qu'ils renforcent
l'hétéronomie.
L'intersection des deux cercles représente les buts de l'école d'aujourd'hui qui, à son insu, aboutit
to des apprentissages utiles au développement de l'autonomie. La capacité de lire et d'écrire, de
faire de l'arithmétique, d'utiliser des cartes géographiques et de situer des événements dans
l'histoire en sont quelques exemples. Si l'autonomie est le but de l'éducation, il faut s'efforcer
d'agrandir la partie commune aux deux cercles. En d'autres termes, il faut conceptualiser toutes
les activités scolaires, y compris l'arithmétique, à l'intérieur de l'autonomie en tant que but à long
terme de l'éducation.

2. L'enseignement/apprentissage de l'arithmétique dans le contexte de l'autonomie
en tant que but de l'éducation
Avant de parler des activités et des principes pédagogiques, j'ai montré huit minutes d'une bande
vidéo illustrant un enseignement de l'arithmétique ayant comme but l'autonomie. Dans cette
activité intitulée "Des enfants de première primaire divisent 62 par 5" (Kamii et Clark, 2000), le
problème était de savoir combien de gommes à 5 cents l'unité, Howard pourrait acheter avec un
budget de 62 cents. Presque tous les enfants avaient donné comme réponse 12 avec un reste de 2,
mais une seule fillette a répondu 13 avec un reste de 2. Sans lui dire que cette réponse était
fausse, l'enseignante a encouragé les enfants autour d'elle à échanger des points de vue afin
d'arriver à un accord. Un des enfants a d'abord vérifié que la fillette n'avait pas fait de faute
quand elle avait écrit "5, 10, 15, 20, …. 50, 55, 60, 62". Les enfants ont ensuite discuté de la
nécessité ou non d'écrire "60" dans cette série. La fillette continua à croire pendant longtemps
qu'elle avait raison, mais quand un garçon lui expliqua que "le 62 n'est pas une gomme", elle
changea d'avis. Pour le développement de l'autonomie, il me semble important d'encourager
echaque enfant à garder son point de vue, honnêtement, jusqu'à ce qu'il soit convaincu qu'une
autre idée est meilleure. Dans l'enseignement traditionnel, les enfants se sentent obligés de faire plaisir à l'enseignant et de donner la réponse "correcte" sous pression sociale.

2. 1. Les activités en classe

Nous avons recours aux trois types d'activités suivantes au lieu de manuels ou de fiches:

- L'utilisation de situations de la vie quotidienne
- La résolution de problèmes exprimés verbalement (comme le problème présenté dans la bande vidéo)
- Des jeux de groupe

2.1.1. L'utilisation de situations de la vie quotidienne

Un exemple de ce premier type d'activités est la votation. Un jour, dans une classe de première année, il fallait décider entre (a) aller dehors pour la récréation ou (b) rester à l'intérieur pour terminer un travail passionnant. Après que 17 enfants eurent voté en faveur d'une des alternatives, un garçon a levé la main en disant à l'enseignante: "On n'a plus besoin de compter les autres parce que les 17 ont déjà gagné." "Comment sais-tu que les 17 ont gagné?" demanda l'enseignante, à quoi l'enfant répondit: "Parce que 17 et 17 font 34 et qu'il n'y a que 32 enfants en classe aujourd'hui." En constatant que les autres élèves avaient l'air de ne rien comprendre, l'enseignante demanda s'ils étaient convaincus. "Bien sûr que non", répondirent les autres et ils insistèrent pour que le comptage des votes se poursuive. Quand ils eurent compté 15 mains, le garçon déclara que c'était exactement comme il l'avait annoncé. Les autres s'émerveillèrent du fait qu'il était possible de connaître le résultat à l'avance!

2.1.2. La résolution de problèmes exprimés verbalement

Ce deuxième type d'activités en classe est une extension du premier type. En général, les manuels présentent d'abord les méthodes de calcul, et ensuite des problèmes exprimés verbalement pour que les élèves appliquent ces méthodes. Nous procédons dans l'ordre inverse. Nous donnons d'abord des problèmes exprimés verbalement, et les enfants inventent des méthodes de calcul pour résoudre ces problèmes. Cette séquence est basée sur le fait que, historiquement, nos ancêtres ont inventé l'arithmétique lorsqu'ils avaient besoin de savoir si leurs troupeaux de moutons étaient rentrés, quand il fallait semer les graines, etc. Les enfants d'aujourd'hui, eux aussi, commencent par penser numériquement dans des situations pratiques.
quand ils veulent savoir combien de biscuits ils vont manger, combien de chaises il faut sortir, etc.

2.1.3. Les jeux de groupe
Des exemples de ce troisième type d'activités en classe sont la "Bataille double" et "Toujours 10". La "Bataille double" (voir la figure 2.1.3a) se joue selon les mêmes principes que la "Bataille", à la différence près que chaque joueur reçoit deux tas de cartes et que la somme de deux cartes d'un joueur est comparée à la somme des deux cartes de son adversaire. Celui qui possède le plus grand total ramasse les quatre cartes. Le joueur qui a le plus grand nombre de cartes à la fin gagne.

![Figure 2.1.3a](image1.png)

Figure 2.1.3a L'arrangement de quatre cartes dans la « Bataille double »

![Figure 2.1.3b](image2.png)

Figure 2.1.3b L'arrangement de neuf cartes dans « Toujours dix »

Pour sa part, "Toujours 10" a trait à la décomposition de 10. On utilise dans ce jeu des cartes allant de 1 (As) à 9. Les neuf premières cartes du tas sont arrangées comme le montre la figure 2.1.3b. À tour de rôle, les joueurs essaient de trouver tous les couples possibles pour faire un total de 10 (1 + 9, 3 + 7, et 5 + 5). Celui qui a le plus de cartes à la fin gagne.

La répétition est nécessaire pour que les enfants apprennent les sommes et les produits, mais il y a une grande différence entre la répétition à travers des jeux et la répétition en ayant recours aux fiches. Dans les jeux, les enfants sont motivés de l'intérieur et apprennent l'arithmétique en jouant. Comme on n'a jamais besoin d'offrir une récompense pour qu'ils jouent, l'avantage des jeux vis-à-vis le développement de l'autonomie est évident.
Un autre avantage des jeux est que les élèves se contrôlent les uns les autres et que l'action en retour est immédiate. Par exemple, si l'un d'eux choisit un 7 et un 4 dans le jeu de " Toujours 10", il s'en trouvera probablement d'autres qui récuseront cette combinaison. Par contre, lorsque l'enseignant fait remplir des fiches, il les corrige en général plus tard pour les rendre le lendemain. Or, l'enfant ne se rappelle pas ce qu'il a fait la veille et cela n'a plus d'intérêt pour lui! Aussi, l'attitude de l'enseignant en matière de fiches n'est pas souhaitable parce qu'elle renforce l'hétéronomie des enfants. Nous voulons que les enfants apprennent à avoir confiance en leur aptitude à trouver une solution et à juger par eux-mêmes. Le fait d'être tributaire de l'omniscience de l'enseignant fait obstacle au développement de l'autonomie et de la confiance en soi de l'enfant.

2.2. Les principes pédagogiques
Dans chacun des trois types d'activités que je viens de décrire, nous suivons deux principes pédagogiques qui sont à contre-courant de l'enseignement traditionnel. Premièrement, nous ne montrons pas aux enfants comment résoudre un problème parce que nous voulons qu'ils utilisent ce qu'ils savent faire pour inventer par eux-mêmes de nouvelles procédures. Cette invention exige beaucoup d'efforts, mais ces efforts constituent le processus de construction.
Le deuxième principe pédagogique que j'ai déjà mentionné est de ne pas dire qu'une réponse est correcte ou incorrecte. Comme vous l'avez déjà vu dans la bande vidéo, nous demandons aux enfants s'ils sont tous d'accord au lieu de renforcer la réponse correcte.
Un exemple du principe consistant à ne pas montrer comment résoudre des problèmes est de ne pas enseigner les algorithmes conventionnels utilisant les techniques d'"emprunt" et de "retenue". J'aimerais vous montrer quelques résultats d'entrevues qui montrent que ces algorithmes sont néfastes au raisonnement numérique chez l'enfant.
Un exercice donné aux élèves à la fin de la deuxième année fut l'addition $7 + 52 + 186$ écrite horizontalement. J'ai demandé aux enfants de faire cet exercice dans leur tête, sans crayon ni papier. Comme le montre le tableau 2.2a, il y avait trois classes de deuxième année, et
l'enseignante de la première classe était la seule qui enseignait les algorithmes conventionnels. Les deux autres enseignantes n'ont présenté aucun algorithme en classe, mais celle de la deuxième classe téléphonait aux parents lorsque ces derniers avaient enseigné ces règles à leurs enfants. C'est pour ces raisons qu'il est indiqué "Algorithmes enseignés en classe" à la première colonne, "Algorithmes jamais enseignés" à la dernière colonne et "Algorithmes enseignés parfois à la maison" à celle du milieu.

Tableau 2.2a. **Réponses à l'exercice 7 + 52 + 186 données par trois classes de deuxième année.**

<table>
<thead>
<tr>
<th>Algorithmes enseignés en classe n = 17</th>
<th>Algorithmes enseignés parfois à la maison n = 19</th>
<th>Algorithmes jamais enseignés n = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>9308</td>
<td>9308</td>
<td>617</td>
</tr>
<tr>
<td>1000</td>
<td>989</td>
<td></td>
</tr>
<tr>
<td>989</td>
<td>986</td>
<td></td>
</tr>
<tr>
<td>938</td>
<td>906</td>
<td>255</td>
</tr>
<tr>
<td>906</td>
<td>838</td>
<td>246</td>
</tr>
<tr>
<td>838</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>356</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithmes enseignés en classe n = 17</th>
<th>Algorithmes enseignés parfois à la maison n = 19</th>
<th>Algorithmes jamais enseignés n = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
<td>138</td>
</tr>
<tr>
<td>198</td>
<td>198</td>
<td>--*</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>--*</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>--*</td>
</tr>
<tr>
<td>29</td>
<td>133</td>
<td>--*</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>--*</td>
</tr>
<tr>
<td></td>
<td>114</td>
<td>--*</td>
</tr>
<tr>
<td></td>
<td>--*</td>
<td></td>
</tr>
</tbody>
</table>

* L'élève n'a pas voulu essayer de faire l'exercice.
Comme on peut le voir au tableau 2.2a, le pourcentage le plus élevé de bonnes réponses (45%) est obtenu par le groupe auquel on n'avait jamais enseigné d'algorithme. Le pourcentage le plus bas (12%) est obtenu par le groupe qui utilisait ces algorithmes en classe, et le groupe auquel on avait parfois enseigné ces algorithmes a produit un pourcentage entre ces deux résultats (26%).

Toutes les réponses erronées données par les trois classes figurent sur le tableau 2.2a. Les lignes pointillées encadrent les réponses erronées qui ne s'écartent pas trop de la réponse exacte. On peut voir que les réponses erronées sont beaucoup plus raisonnables dans le groupe qui n'a jamais utilisé les algorithmes. Les élèves des deux autres classes ont commis des erreurs de l'ordre de 900 et 800. En additionnant 7 au "1" de 186, ils obtenaient des réponses du type 800. S'ils reportaient "1" d'une autre colonne, leurs réponses se trouvaient dans les 900. La réponse 29 résulte du calcul \(7 + 5 + 2 + 1 + 8 + 6\) ! Voilà un exemple qui montre que les algorithmes "désapprennent" aux enfants le peu qu'ils savent de la numération de position. Autrement dit, les enfants qui ont un raisonnement correct sont ceux qui réfléchissent d'une façon autonome.

Après avoir évoqué un problème écrit horizontalement portant sur l'addition de nombres à un chiffre, deux chiffres et trois chiffres, j'aimerais maintenant vous donner quelques exemples de problèmes écrits verticalement tel que \(16 + 17\).

J'ai écrit ce problème sur une feuille devant chaque enfant de deuxième année et je leur ai demandé d'écrire leur réponse. Presque tous les enfants ont écrit la réponse exacte. J'ai alors pris un sac de jetons et demandé aux enfants de sortir 16 jetons pour le premier nombre et 17 jetons pour le deuxième. Je leur ai ensuite demandé d'expliquer, à l'aide des jetons, comment tout cela fonctionnait (en leur indiquant ce qu'ils avaient écrit).

Les enfants qui avaient inventé leurs propres procédures expliquaient souvent qu'ils avaient mis 10 et 10 ensemble, ce qui faisait 20, et comme \(6 + 7 = 13\), ils ont fait \(20 + 10 + 3 = 33\). Par contre, les enfants à qui on avait enseigné les algorithmes ont commencé par additionner les unités. Ils montreraient d'abord que \(6 + 7 = 13\), et qu'ils réjetaient "1". Dans ce cas, je réagissais en disant que je ne voyais pas les 33 nulle part, et la plupart des enfants montraient \(1 + 1 + 1\). Si j'insistais sur le fait que je ne comprenais toujours pas comment ils avaient obtenu la réponse de 33, ils finissaient par montrer (●●●) et (●●●).

Voici le résultat d'un apprentissage hétéronome. L'algorithme rend l'enfant capable de suivre des règles pour écrire des chiffres, mais sans comprendre pourquoi la réponse est juste. Le tableau
2.2b montre que seulement 23% des enfants de deuxième année qui avaient reçu un enseignement traditionnel de l'algorithme ont pu expliquer comment ils ont obtenu la réponse correcte. Par contre, 83% des enfants qui avaient inventé leurs propres procédures ont été capables d'expliquer comment ils ont obtenu la réponse. Ce pourcentage montre que ce n'est pas tous les enfants de la deuxième année qui arrivent à inventer une procédure en utilisant la notion de dizaine. Certains résolvent ce problème par le comptage de 17 à 33.

<table>
<thead>
<tr>
<th>Explication adéquate</th>
<th>Classe "traditionnelle" n = 39</th>
<th>Classe "constructiviste" n = 46</th>
<th>Diff.</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>23</td>
<td>83</td>
<td>60</td>
<td>.001</td>
</tr>
</tbody>
</table>

Passons maintenant à un exemple de soustraction en troisième année. La démarche de l'entrevue fut comme dans la situation de l’addition. Après avoir fait l’exercice, les enfants ont écrit leur réponse et je leur ai demandé d'expliquer leurs procédures. Comme on peut le voir au tableau 2.2c, présenté à la page suivante, 85% des élèves du groupe "constructiviste" (enfants qui avaient inventé leurs propres procédures) ont produit la réponse correcte, tandis que 97% des enfants du groupe "traditionnel" (enfants qui avaient reçu un enseignement des algorithmes) ont réussi à obtenir cette réponse. Le pourcentage de ceux qui ont utilisé l'algorithme dans le groupe "constructiviste" (ou autonome) fut de zéro et de 100% dans le groupe "traditionnel" (ou hétéronome).

Je tiens à préciser que le pourcentage des élèves qui ont expliqué adéquatement leurs procédures réfère uniquement aux enfants qui ont produit la réponse correcte. Ainsi, le pourcentage de 100 % à la troisième ligne signifie que tous les enfants du groupe "constructiviste" qui ont réussi à donner la réponse correcte (85 %) sont aussi parvenus à l'expliquer. À l’opposé, si presque tous les enfants du groupe "traditionnel" ont donné la réponse correcte, seulement 21% d’entre eux ont pu expliquer comment cette réponse a été obtenue. Le problème majeur pour ces enfants fut, comme toujours, l'incompréhension de la numération de position. Par exemple, 72% des enfants de ce groupe ont montré 3 - 1 pour expliquer ce qu’ils avaient fait avec la colonne des dizaines.
Tableau 2.2c. Pourcentage d'enfants de deux classes de troisième année répondant à

<table>
<thead>
<tr>
<th>Réponse exacte</th>
<th>Classe "traditionnelle" n = 39</th>
<th>Classe "constructiviste" n = 13</th>
<th>Diff.</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilisation de l'algorithme</td>
<td>97</td>
<td>85</td>
<td>12</td>
<td>n.s.</td>
</tr>
<tr>
<td>Explication adéquate (pourcentage de ceux qui ont obtenu la réponse exacte)</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>.001</td>
</tr>
</tbody>
</table>

Je pourrais vous donner beaucoup d'autres exemples qui montrent que l'enseignement des algorithmes est nuisible au développement du raisonnement numérique chez l'enfant, mais ces exemples se trouvent dans mes livres (Kamii, 1994, 2004). Pour terminer, j'aimerais plutôt vous parler de deux raisons qui soutiennent ma conclusion.

Premièrement, les enfants doivent renoncer à réfléchir pour suivre des règles de "retenue" et d"'emprunt". Ces règles obligent les enfants à aller de droite à gauche pour l'addition, la soustraction, et la multiplication, c'est-à-dire de la colonne des unités à celles des dizaines, des centaines, etc. Cependant, quand on laisse les enfants libres de penser à leurs façons, ils suivent invariablement la direction opposée. Parce qu'il n'y a pas de compromis possible entre le fait d'aller de gauche à droite et celui d'aller de droite à gauche, les enfants doivent renoncer à réfléchir pour obéir à leurs enseignants.

La deuxième raison pour laquelle on peut dire que les algorithmes sont néfastes est que ces règles font "désapprendre" la numération de position et empêchent les enfants à développer le sens du nombre. Quand on enseigne un algorithme pour résoudre un problème tel que 26 x 5, on peut entendre l'enfant qui dit "5 fois 6 font 30, je pose le 0 et retiens 3, 5 fois 2 font 10, etc." Mais le 3 n'est en réalité pas un 3, et le 2 n'est pas un 2. Les enfants des États-Unis qui réfléchissent d'une façon autonome diront "4 fois 25 font 100, donc 5 fois 25 font 125, et 125 + 5 font 130."
3. Conclusion
En conclusion, l'enseignement a été un artisanat fondé sur la tradition et sur des opinions appelées "philosophies". Mais il est temps de repenser nos buts aussi bien que nos méthodes d'enseigner. Une fois que nous avons compris que l'enfant apprend par construction des valeurs morales et des connaissances, nous nous rendons compte que ce n'est pas par transmission que l'enfant apprendra l'arithmétique. Comment favoriser le processus de construction est une question dont j'ai amorcé l'étude, et je vous invite à poser des questions et à faire des expériences pour trouver des moyens toujours plus adéquats pour l'épanouissement de la personnalité de chaque enfant.

Bibliographie

Sylvine Schmidt
Université de Sherbrooke

L’autonomie de l’enfant dans la théorie de Vygotski

INTRODUCTION
Dans cette réflexion sur le rôle de l’autonomie dans l’apprentissage, Vygotski (1985) est certes un auteur incontournable. Les idées qu’il a développées sur le plan épistémologique servent de repères intéressants lorsqu’on tente de comprendre l’apprentissage des savoirs scolaires dans la micro-société de la classe, et plus particulièrement la place à accorder à l’autonomie. Dans cet article, seront tout d’abord développées quelques grandes idées fondamentales de cet auteur. Cet exposé est nécessaire pour comprendre comment l’enfant peut agir de manière autonome, au regard de son niveau de développement actuel et de la zone proximale de développement. Cet aspect sera développé dans une dernière partie.

L’ŒUVRE DE VYGOTSKI
Dans l’ensemble de son œuvre, Vygotski a développé à la fois un cadre épistémologique et un cadre méthodologique qui fournissent des orientations intéressantes pour l’étude du développement et de l’apprentissage de l’enfant. Les nombreuses études qu’il a effectuées, appuyées sur une approche méthodologique originale pour l’époque, lui ont servi à étayer sa thèse épistémologique et à fonder les éléments d’une théorie, qui, aujourd’hui encore plus que jamais, inspire un bon nombre de chercheurs. Cet intérêt pour ses écrits est notable particulièrement chez les didacticiens des mathématiques, en raison de la préoccupation actuelle au sein de cette communauté de chercheurs envers le rôle des interactions sociales sur le
développement des concepts mathématiques. En premier lieu, cette section présente brièvement les cadres épistémologique et méthodologique développés par cet auteur. Par la suite, quelques éléments de sa théorie concernant le rapport entre le langage et la pensée seront abordés sous l’angle du développement du langage intérieur et de la formation de concept.

Cadre épistémologique

Vygotski a développé une théorie historico-culturelle, qui conçoit le développement de l’enfant comme un processus d’appropriation de l’expérience sociale accumulée. La position de cet auteur va à l’encontre des perspectives psychologiques de son époque, qui ne tiennent pas compte selon lui :

- de la différence qui existe entre les processus de développement et de maturation organique d’une part et processus culturel de l’autre, de la différence fondamentale entre ces deux ordres génétiques et donc de la différence qui en découle sur le plan des lois qui règlent ces deux aspects du développement du comportement de l’enfant. (Vygotski dans Schneuwly et Bronckart, 1985, p.26).

Vygotski reconnaît que dans la tendre enfance cet aspect de la maturation biologique domine le développement des formes culturelles supérieures du comportement; il caractérise cette époque de période préhistorique du développement culturel. Toutefois, le tord de ces approches, selon lui, est de limiter la compréhension du développement de l’enfant au seul fait biologique et de négliger la genèse du comportement humain comme processus du développement historique de l’humanité. Pour cet auteur, il existe deux lignes de développement psychique incontournables: le processus d’évolution biologique et le processus de développement historique.

Dans ses recherches, Vygotski s’est donc intéressé aux processus de développement des formes supérieures de comportement de l’enfant, au regard de leur origine historico-culturelle. Il soutient la thèse que le mouvement réel du processus de développement des formes supérieures de pensée s’effectue du social à l’individuel. Il affirme :

> Chaque fonction psychique supérieure apparaît deux fois au cours du développement de l’enfant : d’abord comme activité collective, sociale et donc comme fonction interpsychique, puis la deuxième fois comme activité individuelle, comme propriété intérieure de la pensée de l’enfant, comme fonction intrapsychique. (Vygotski dans Schneuwly et Bronckart, 1985, p.111)
Pour Vygotski, ce passage des formes de l’activité en collaboration aux formes d’activité individuelle répond à une loi générale du développement de toutes les fonctions psychiques supérieures. L’idée de médiation est au cœur de sa théorie. Le développement de l’enfant serait le résultat de son immersion dans son environnement social et serait relié aux processus d’intériorisation d’expériences sociales et de procédures élaborées historiquement et culturellement, celles-ci étant cristallisées sous forme de systèmes d’outils ou de signes. Cette intériorisation conduit à une individualisation progressive de ses fonctions psychiques supérieures (attention volontaire, mémoire sélective, etc.). Ces fonctions psychiques seraient directement issues de rapports sociaux dont elles seraient en fait l’intériorisation.

Le processus d’intériorisation, qui permet ce passage de l’interpsycho à l’intrapsycho, s’exerce au moyen d’outils qui ont été élaborés socialement tout au cours de l’histoire de l’humanité. Vygotski s’appuie sur l’analogie des outils matériels dont se sert l’homme pour agir sur la nature et qui sont le fruit des expériences sociales antérieures transmises de génération en génération. L’action de l’homme sur la nature n’est pas directe, elle est médiatisée par l’outil qui s’intercale entre le sujet et son environnement physique et social. Cet outil, créé socialement, détermine et conditionne son comportement, et les transformations subséquentes de l’outil vont modifier son comportement face à la nature et à son monde.

Ces outils peuvent être des objets matériels, mais aussi des moyens artificiels construits socialement, comme des systèmes de signes, l’objet agissant sur la nature, le signe sur le comportement propre de l’individu ou celui d’autrui. L’activité intellectuelle est elle aussi médiatisée et elle l’est par ces systèmes de signes qui, en retour, la guident et la structurent. Le signe exerce un rôle semblable à celui de l’outil dans le travail. Vygotski donne des exemples de ces systèmes de signes : « le langage, les diverses formes de comptage et de calcul, les moyens mnémotechniques, les symboles algébriques, les œuvres d’art, l’écriture, les schémas, les diagrammes, les cartes, les plans, tous les signes possibles, etc. » (Vygotski dans Schneuwly et Bronckart, 1985, p.39). Ces systèmes sont des instruments psychologiques qui ont été élaborés socialement (ils ne sont pas de nature organique, ni de nature individuelle). Un système de signes devient un instrument psychologique lorsqu’il est utilisé comme un moyen d’action sur le psychisme et le comportement propres de l’individu.

L’instrument psychologique se différencie fondamentalement de l’instrument technique par la direction de son action. Le premier s’adresse au psychisme et au comportement, tandis que le second, tout en constituant
aussi un élément intermédiaire entre l’activité de l’homme et l’objet externe, est destiné à obtenir tel ou tel changement dans l’objet même. L’instrument psychologique ne provoque pas de changements dans l’objet; il tend à exercer une influence sur le psychisme propre (ou celui des autres) ou sur le comportement. Il n’est pas un moyen d’agir sur l’objet. Dans l’acte instrumental se manifeste par conséquent une activité relative à soi-même et non à l’objet. (Vygotski dans Schneuwly et Bronckart, 1985, p.41-43)

Les instruments psychologiques ne font pas que modifier et orienter le cours du développement intellectuel. Bien plus, lorsqu’un instrument et son usage particulier sont intégrés dans l’action, il en résulte que l’action elle-même est transformée et structurée de nouvelle façon en fonction des propriétés intrinsèques de l’instrument : « Dans l’acte instrumental, l’homme se contrôle lui-même de l’extérieur, à l’aide d’instrument psychologique » (Vygotski dans Schneuwly et Bronckart, 1985, p.44)

En somme pour Vygotski, l’ontogenèse des processus psychiques supérieurs est médiatisée par les systèmes de signes, des instruments d’origine sociale, à partir de la base psychique composée des processus élémentaires. La maîtrise de ces systèmes construits culturellement suscite une transformation des processus psychiques intellectuels. L’emploi du signe est le moyen par lequel les processus psychiques sont maîtrisés et orientés, des formes élémentaires vers les formes supérieures. Tout comme l’outil matériel, le système de signes guide, contrôle le comportement, d’abord à partir de l’extérieur, ensuite de l’intérieur. Dans cette perspective, le processus de développement ne peut être conçu comme un processus d’adaptation à la réalité, mais comme un processus d’appropriation des construits culturels élaborés au cours de l’histoire de l’humanité en conformité avec les lois régies par les sociétés.

Pour Vygotski, l’étude du développement de la pensée de l’enfant doit nécessairement prendre connaissance de comment les systèmes de signes sont employés et intégrés dans l’activité et mettre en lumière la restructuration des fonctions naturelles par les actes instrumentaux. Dans cette tâche, il a porté une attention particulière au système privilégié pour le contrôle de son comportement propre et celui d’autrui : le langage.

Cadre méthodologique

Dans son étude, Vygotski fonde une méthode de recherche qui repose sur l’identification de l’unité de base commune au langage et à la pensée, c’est-à-dire l’unité de base de la pensée verbale en tant que tout psychique. Cette unité, afin d’être éclairante pour l’analyse, doit être une
partie intégrante de ce tout, et être non-décomposable. Elle doit posséder les propriétés fondamentales de cette formation psychique, dont elle doit nous révéler son essence. Vygotski a reconnu cette unité de base de la pensée verbale dans la signification du mot. La face cachée du mot, sa partie interne, constitue ainsi le point nodal de la pensée verbale. Selon Vygotski (1985), la signification du mot est à la fois :

- **langage**, parce qu’elle est inséparable du signe, le son sans l’aspect sémantique inhérent à la signification n’est pas un mot ;
- **pensée**, parce que la généralisation qu’elle sous-tend est un acte pur de la pensée.

Vygotski distingue signification et sens.

Le sens, …, représente l’ensemble de tous les faits psychologiques que ce mot fait apparaître dans notre conscience. Le sens d’un mot est ainsi une formation toujours dynamique, fluctuante, complexe, qui comporte plusieurs zones de stabilité différentes. La signification n’est qu’une des zones du sens que le mot acquiert dans un certain contexte verbal, mais c’est la zone la plus stable, la plus unifiée et la plus précise. (p.370)

Ainsi, le sens du mot change en fonction du contexte. En raison de son caractère fluctuant, le sens d’un mot est inépuisable et il n’est jamais intégral. Par contre, la signification du mot, prise isolément (comme dans le dictionnaire, par exemple), reste relativement stable malgré les modifications contextuelles qui peuvent être introduites. Elle relève de la décontextualisation. Elle est avant tout une généralisation qui se rapporte à tout un groupe ou à toute une classe d’objets. Il va même plus loin :

… ce qui dans la nature psychique du mot est l’élément le plus important, le plus fondamental, qui fait que le mot est un mot et sans lequel le mot cesse d’être lui-même : la généralisation qui y est incluse en tant que mode tout à fait spécifique de reflet de la réalité dans la conscience. (p.327)

Pour Vygotski, signification de mot et généralisation sont synonymes. Au point de départ, le jeune enfant ne différencie pas l’objet désigné par le mot, le signe ou la forme sonore du mot, et la signification du mot. Cette différenciation se réalise lorsque la généralisation prend forme pour lui-même, en tant que reflet interne de la réalité. Par ailleurs, la communication sociale ne peut exister sans les signes, sans la signification des mots, sans la généralisation. Signification du mot, généralisation et communication sont intrinsèquement liée :

1 Vygotski indique dans son texte qu’il emprunte cette distinction entre sens et signification à Paulhan.
Pour transmettre à autrui une expérience vécue ou un contenu de conscience, il n’est pas d’autre moyen que de les rattacher à une classe déterminée, à un groupe déterminé de phénomènes mais cela, comme nous le savons déjà, exige absolument une généralisation. Donc la communication suppose nécessairement la généralisation et le développement de la signification du mot, c’est-à-dire que la généralisation devient possible avec le développement de la communication. Ainsi, les formes supérieures de communication psychiques propres à l’homme ne sont possibles que parce que l’homme à l’aide de la pensée reflète la réalité en la généralisant. (Vygotski, 1985, p.39).

La communication entre humains n’est possible que parce que les significations de mots sont des généralisations. La signification du mot, comme construit historico-culturel, préexiste à l’individu. L’enfant ne détermine pas de lui-même, librement, les significations de mot. Celles-ci lui sont données par son entourage. L’adulte, dans sa relation avec l’enfant, va s’en servir comme moyen de communication. Ainsi, cette signification a d’abord une existence extérieure objective pour la communication avec les autres, ce n’est qu’ensuite qu’elle est intérieurisée et que débute son existence propre pour l’enfant. La signification de mot va agir en tant que voie médiate permettant l’appropriation des construits élaborés socialement. En effet, pour Vygotski, la pensée ne coïncide pas directement avec le mot. Dans le passage de l’idée au mot, la pensée subit un processus complexe de décomposition et de reconstitution dans le mot. Dans ce processus, les significations de mots jouent un rôle crucial :

Non seulement la pensée est médiatisée extérieurement par les signes mais elle l’est intérioruellement par les significations. La communication immédiate entre les consciences, et c’est là tout le problème, est impossible non seulement physiquement mais aussi psychologiquement. On ne peut y parvenir que par une voie indirecte, médiate, c’est-à-dire grâce à la médiatisation interne de la pensée d’abord par les significations puis par les mots. C’est pourquoi la pensée n’équivaut jamais à la signification littérale des mots. La signification sert de médiation entre la pensée et l’expression verbale, c’est-à-dire que la voie qui va de la pensée au mot est indirecte, intériorément médiate. (p.380).

En d’autres termes, pour se transformer en langage, la pensée se réorganise, se modifie, en choisissant la « signification de mot » pouvant le mieux médialiser l’idée visée. De la signification au mot, un processus similaire de médiation est aussi amorcé. Vygotski précise que ce mouvement s’effectue à travers toute une série de plans intérieurs : du motif à la pensée, de la formulation de la pensée au langage intérieur, du langage intérieur à la signification des mots, de la signification des mots aux mots du langage extériorisé (p.382).
Ainsi, l’analyse des significations de mot devrait nous dévoiler la nature de la pensée verbale, en tant que forme de comportements socio-historiques intérieorisés, servant de voie médiate entre le langage et la pensée. Fort de cette hypothèse et de son approche méthodologique, Vygotski s’est attaqué dans ses recherches au rapport entre le langage et la pensée.

LE RAPPORT ENTRE LE LANGAGE ET LA PENSÉE

Langage intérieur

Vygoski comprend le langage égocentrique d’une manière tout autre. À l’opposé de Piaget qui situait ce phénomène langagier dans la socialisation inachevée de l’enfant, Vygotski l’interprète comme une marque d’une individualisation insuffisante de sa pensée et de la primauté de sa socialisation. Le langage de l’enfant remplit d’abord une fonction de communication sociale. C’est un langage extériorisé qui sert d’outil pour la communication, les échanges et la coordination avec les autres par la médiation des significations de mots. Par la suite, cette fonction de communication se différencie progressivement; le langage s’intériorise et sert de support à la pensée. Le langage pour autrui devient un langage pour soi, qui permet d’orienter, de développer et de contrôler ses propres processus de pensée dans la résolution de problèmes. Il y a un passage du langage extériorisé au langage égocentrique et ensuite au langage intérieur, en
raison de la capacité grandissante de l’enfant à penser les mots et à se les représenter mentalement, grâce à la généralisation. Dans cet optique, le langage égocentrique est un langage extériorisé par ses manifestations et un langage intérieur par ses fonctions d’aide à la pensée et sa structure particulière. En effet, lorsque le langage sert d’outil pour communiquer avec les autres, il nécessite une structure adaptée pour se faire comprendre. Or, dans le langage intérieur, l’individu se parle à lui-même, il n’a pas à être compris d’autrui. Cette situation fait en sorte que la structure élaborée du langage extériorisé n’est plus nécessaire. Sa syntaxe et sa phonétique vont se simplifier à l’extrême pour laisser davantage la place à la signification et au sens des mots. Des changements seront introduits au niveau de sa structure et une nouvelle forme de langage va se développer pour mieux répondre à sa nouvelle fonction. Ainsi, la structure du langage intérieur se distingue par son caractère prédicatif, son abrègement et sa condensation, ainsi que par son apparente incohérence et inintelligibilité extérieurement. En raison de la prédominance du sens sur la signification des mots sur le plan interne de la pensée, les significations de mots sont des idiomatismes, incompréhensibles de l’extérieur. Cette tendance au caractère abrégé, prédicatif et incohérent, commence déjà à se manifester dans le langage égocentrique. Piaget y a vu l’indice de l’involution du langage égocentrique jusqu’à sa disparition complète, alors que Vygotski l’a interprétée comme sa transformation et son évolution en langage intérieur par différenciation progressive de la fonction de communication du langage. Son étude lui a permis à nouveau d’étayer sa thèse que les processus psychiques supérieurs, tels le langage, prennent naissance dans des formes d’activités historico-culturelles et que l’intériorisation de ces formes sociales conduit aux fonctions intellectuelles individuelles. Dans ce passage du langage extérieur au langage intérieur, l’enfant assimile des structures verbales qui vont devenir les structures fondamentales de sa pensée, ce qui montre comment son développement est tributaire « de la maîtrise des moyens sociaux de la pensée, c'est-à-dire dépend du langage » (Vygotski, 1985, p.141).

La formation de concepts
La perspective sociale de Vygotski accorde une part essentielle aux relations interindividuelles qui dessinent les contours culturels des objets de savoir, notamment à la médiation par l’adulte, et reconnaît dans le signe, dans le mot, un rôle médiateur dans le processus de construction des connaissances. Vygotski (1985) précise :

Actes du colloque du GDM-2003 26
Comme le montrent des recherches que nous n’analyserons pas ici, toutes les fonctions psychiques supérieures sont unies par une caractéristique commune, celle d’être des processus médiatisés, c’est-à-dire d’inclure dans leur structure, en tant que partie centrale et essentielle du processus dans son ensemble, l’emploi du signe comme moyen fondamental d’orientation et de maîtrise des processus psychiques.

Dans la formation des concepts ce signe est le mot, qui sert de moyen de formation des concepts et devient par la suite leur symbole. (p.150-151)

Il précise ailleurs comment le mot intervient dans la formation des concepts :

Le concept apparaît lorsqu’une série de traits distinctifs qui ont été abstraits est soumise à une nouvelle synthèse et que la synthèse abstraite ainsi obtenue devient la nouvelle forme fondamentale de la pensée, permettant à l’enfant de saisir la réalité qui l’environne et de lui donner un sens. Et dans la formation du véritable concept le rôle décisif, on l’a dit, incombe au mot. C’est à l’aide du mot justement que l’enfant dirige volontairement son attention sur certains traits distinctifs, à l’aide du mot qu’il en fait la synthèse, à l’aide du mot qu’il symbolise le concept abstrait et l’utilise en tant que signe supérieur entre tous ceux qu’a créés la pensée humaine. (p.197).

Ainsi, l’emploi actif des mots, des signes, par l’enfant dans la résolution de problèmes serait le facteur immédiat qui détermine la formation et le développement des concepts. Les concepts émergent et prennent forme lors d’opérations visant à résoudre un problème, ces opérations étant régies par des actions régulatrices orientées vers le but à atteindre. Dans ce processus, l’utilisation fonctionnelle du mot joue un rôle essentiel; il sert à canaliser l’attention, à orienter et supporter l’analyse, à faire la synthèse et à cristalliser celle-ci à l’aide d’un mot.

Par ailleurs, sur le plan interne du langage, Vygotski a eu le mérite de montrer que la signification des mots se modifie et se développe :

Au cours du développement historique du langage la structure sémantique de la signification des mots se modifie, la nature psychologique de cette signification évolue, que des formes inférieures et primitives de généralisation la pensée verbale s’élève aux formes supérieures les plus complexes, qui trouvent leur expression dans les concepts abstraits, qu’enfin ce n’est pas seulement le contenu objectif du mot qui s’est modifié au cours du développement historique du langage mais le caractère même du reflet et de la généralisation de la réalité dans le mot. (Vygotski, 1985, p.323).

Cet auteur rattache ce processus de développement à une cause bien précise. Selon lui, toute pensée remplit une fonction particulière. Comme il le précise:
Toute pensée tend à unir une chose à une autre, à établir un rapport entre des choses. Toute pensée a un mouvement, un déroulement, un développement, bref toute pensée remplit une certaine fonction, effectue un certain travail, résout un certain problème. (p. 329)

Pour Vygotski, la cause productive des changements de la signification de mot et de la maturation des concepts réside dans le rôle fonctionnel de ces significations dans l’acte de pensée. La pensée exerce invariablement une certaine fonction, et la signification du mot varie par la différenciation des différents modes de fonctionnement de la pensée. Selon cet auteur, ce ne sont pas comme telles les situations-problèmes et les représentations du but à atteindre dans la résolution du problème qui déterminent et régissent le cours du développement. Celles-ci le mettent en branle mais ne le règlent pas. Ce déterminant est à rechercher plutôt du côté de l’emploi des outils, des moyens qui permettent la réalisation du travail en médiatisant les processus intellectuels. Vygotski retrace l’évolution de la pensée vers le concept par le biais de trois stades distincts de généralisation :

1) la pensée syncrétique, correspondant à une appréciation globale et indifférenciée d’un tout, dont les composantes sont réunies sans raison interne apparente. La signification du mot, dans ce mode de pensée, est une simple extension diffuse des éléments liés extérieurement sans rapport interne dans l’impression subjective et émotionnelle de l’enfant.

2) La pensée par complexes, cohérente et objective, détachée cette fois des impressions de l’enfant, reflétant des liaisons objectives entre des objets concrets ou des choses. Cette pensée est concrète et empirique, en ce sens qu’elle procède à partir de la réunion concrète d’un groupe d’objets ou de choses hétérogènes, sur la base de l’existence d’affinités de fait dégagées au cours de l’expérience de l’enfant. Ces liaisons sont ponctuelles, et les généralisations qui les sous-tendent sont réalisées selon des critères empiriques divers. Les liaisons ainsi créées sont des plus variées, et elles n’ont souvent aucun rapport entre elles. Il n’y a pas d’uniformité ou d’unité de liaisons dans le complexe. La fin de ce stade est marquée par l’apparition des pseudo-concepts, nommés ainsi en raison de leur lien étroit avec les concepts véritables.

3) La pensée par concept comportant une généralisation des objets ou choses selon un trait distinctif unique, différencié et abstrait. Ce mode implique des actes de pensée d’analyse et de synthèse, exercés tout en prenant une distance de l’expérience empirique concrète.
Vygotski précise qu’il n’est pas nécessaire que la pensée par complexe soit complètement achevée pour que lui succèdent dans l’ordre les pseudo-concepts et les concepts véritables. De plus, il arrive dans la vie de tous les jours des moments où les adultes fonctionnent par pseudo-concepts. Ainsi, les trois stades de développement qu’il décrit ne sont pas forcément séquentiels et unidirectionnels.

Le rôle de l’adulte dans le développement des concepts via les pseudo-concepts
Cette position particulière du pseudo-concept en fait un « maillon de liaison entre la pensée par complexe et la pensée conceptuelle », qui nous instruit sur le processus d’intériorisation des significations de mot et de la généralisation qui est associée au concept :

Le langage de l’entourage avec ses significations stables, constantes, prédétermine les voies que suit le développement des généralisations chez l’enfant. Il lie l’activité propre de l’enfant, la canalisant dans un sens déterminé, rigoureusement défini. Mais, tout en suivant cette voie déterminée, préétablie, l’enfant pense selon le mode propre à son stade de développement intellectuel. Les adultes, dans la relation orale avec lui, peuvent déterminer le cours du développement des généralisations et son terme, c’est-à-dire la généralisation qui en résulte. Mais ils ne peuvent lui
transmettre leur mode de pensée. L’enfant assimile les significations des mots qui lui viennent des adultes sous une forme déjà élaborée … Les voies selon lesquelles s’étendent et se transforment les significations de mots lui sont données par l’entourage dans le processus de communication verbale. Mais l’enfant ne peut assimiler d’emblée le mode de pensée des adultes et il obtient un produit qui, tout en étant semblable à celui des adultes, résulte d’opérations intellectuelles totalement différentes et a été élaboré selon un mode particulier de pensée. (Vygotski, 1985, p.173)

Alors que l’entourage campe le décor social qui sert de balises à l’évolution des significations de mots et des concepts en déterminant à l’avance l’ensemble des objets et des choses auxquelles ils peuvent s’appliquer, l’apprentissage est le résultat d’une construction personnelle de l’enfant résultant de ses propres opérations de pensée.
Ainsi, l’évolution de la signification des mots et des concepts est tributaire de l’environnement socioculturel de l’enfant, qui établit les conditions de communication et de collaboration avec autrui, notamment avec les adultes. On retrouve à nouveau ce passage de l’inter à l’intrapsychique, où le concept a d’abord une signification pour les autres avant d’en avoir une pour soi. Vygotski précise :

Il se crée donc une situation génétique originale, qui est plutôt la règle générale que l’exception dans tout le développement intellectuel de l’enfant. Ce qui fait l’originalité de cette situation, c’est que l’enfant commence en fait à utiliser et à manier les concepts avant d’en prendre conscience. Le concept « en soi » et « pour autrui » se développe chez l’enfant avant le concept « pour soi ». Le concept « en soi » et « pour autrui », qui est déjà dans le pseudo-concept, est la prémisses génétique fondamentale pour que se développe un concept au sens véritable du mot. (Vygotski, 1985, p.177)

Le fait que l’enfant utilise le concept dans sa communication avec autrui avant même d’en avoir pris objectivement conscience conduit Vygotski à distinguer entre concepts spontanés et concepts scientifiques, entre développement et apprentissage.

Concepts spontanés et concepts scientifiques

Vygotski fait une distinction entre concepts spontanés, appelés aussi concepts quotidiens, et concepts scientifiques². Il définit les concepts spontanés dans ces termes :

² Précédemment, Vygotski a identifié trois stades dans le développement conceptuel. Ce sont en fait des niveaux de généralisation distincts. Les concepts spontanés et scientifiques n’ont pas été élaborés en fonction de tels niveaux de généralisation, mais plutôt en fonction des contextes dans lesquels ils émergent, soit dans l’entourage et le milieu naturel de l’enfant, soit dans un cadre scolaire. Que ce soient les concepts spontanés ou les concepts scientifiques,
Par pensée « spontanée » ou concepts « quotidiens » l’auteur entend les formes de pensée ou concepts quotidiens qui ne se développent pas dans le processus d’assimilation d’un système de connaissances, apporté à l’enfant par l’enseignement, mais se forment dans le processus de son activité pratique et de sa communication immédiate avec son entourage (Vygotski, 1985, p.209)

En ce qui concerne les concepts scientifiques, il précise :

Le développement d’un concept scientifique s’effectue dans les conditions d’un processus éducatif, qui représente une forme spécifique de collaboration systématique entre le pédagogue et l’enfant, collaboration au cours de laquelle les fonctions psychiques supérieures de l’enfant viennent à maturité avec l’aide et la participation de l’adulte. (Vygotski, 1985, p.209-210)

Selon Vygotski, les concepts spontanés tirent leur source dans l’expérience concrète de l’enfant, alors que les concepts scientifiques prennent leurs origines des définitions verbales des savoirs culturels. Il fait cette distinction entre concepts spontanés et concepts scientifiques pour plusieurs ordres de raisons. Entre autres, il soulève que les conditions internes et externes présentes lors de leur développement respectif sont foncièrement différentes. Les impulsions à l’origine de leur développement sont aussi différentes. Les problèmes que l’enfant rencontre dans son développement conceptuel ne sont pas les mêmes selon que cette évolution a lieu dans le cadre d’un apprentissage scolaire ou celui d’un processus relevant de l’expérience personnelle de l’enfand dans son milieu naturel. Les concepts spontanés et scientifiques ont par conséquent un rapport tout autre avec l’expérience de l’enfant, un rapport tout autre également avec l’objet. Les concepts spontanés sont imbibés de la riche expérience concrète de l’enfant, ce qui fait leur force. Par contre, leur incapacité à l’abstraction et à leur utilisation volontaire est soulevée en retour. Les concepts quotidiens ou spontanés, comme ce dernier nom l’indique, sont spontanés, non-conscients et non-systémiques. Les concepts scientifiques sont au contraire volontaires, consciences et systémiques. Les concepts scientifiques, par leur définition verbale, suscitent une prise de conscience immédiate et leur maniement volontaire, grâce à leur intégration dans un système organisé de concepts. D’un autre côté, ce verbalisme constitue un danger en raison de l’insuffisante saturation en concret qu’il procure au concept. À cet égard, Vygotski précise que ce qui fait la force des concepts scientifiques fait la faiblesse des concepts quotidiens, et

l’enfant n’assimile pas d’emblée leurs significations, mais se les réapproprie en fonction de son mode de pensée propre (pensée syncrétique, par complexe ou autre).

Actes du colloque du GDM-2003 31
inversement, que ce qui est la force des concepts quotidiens est la faiblesse des concepts scientifiques. (Vygotski, 1985, p.223).

Selon Vygotski, le trait distinctif le plus fondamental entre concepts scientifiques et concepts spontanés concerne la présence d’un système pour les premiers, et l’absence de tel système (ou un développement incomplet) pour les seconds. Pour le comprendre, reprenons dans l’ordre les trois caractéristiques énoncées précédemment et sur lesquels les concepts spontanés et scientifiques s’opposent.

Le caractère non-conscient des concepts spontanés (ou quotidiens) versus le caractère conscient des concepts scientifiques

Vygotski définit la prise de conscience en utilisant cette formule : « La prise de conscience est un acte de la conscience, dont l’objet est l’activité même de la conscience.» (Vygotski, 1985, p.242).

La description de ce processus aide à faire voir pourquoi il n’y a pas de prise de conscience dans les concepts spontanés ou quotidiens :

> En effet, l’enfant qui manie des concepts spontanés parvient relativement tard, comme on sait, à prendre conscience de ceux-ci, à définir verbalement le concept, à être capable d’en donner une formulation verbale, à l’employer volontairement lorsqu’il établit des rapports logiques complexes entre les concepts. L’enfant connaît déjà les choses dont il est question, il a le concept de l’objet. Mais ce que représente en soi ce concept reste encore vague pour lui. Il a le concept de l’objet, il a conscience de l’objet même qui est représenté dans le concept, mais il n’a pas conscience du concept lui-même, de l’acte propre de sa pensée grâce auquel il se représente l’objet (Vygotski, 1985, p.283).

Dans le concept spontané, l’attention de l’enfant est tournée vers l’objet. Il prend conscience de l’objet, et non du concept qui représente cet objet. Il établit un rapport direct avec lui, d’où son incapacité à l’aborder de manière abstraite ne pouvant faire porter son attention sur l’acte de pensée qui appréhende cet objet. Le concept scientifique n’a pas un tel rapport direct avec l’objet. Au contraire, dans le concept scientifique, l’enfant prend plus conscience du concept lui-même, et beaucoup moins de l’objet qu’il représente. Entre autres par le biais de sa définition verbale, le concept scientifique débute par des liens établis avec d’autres concepts, qui sont eux-mêmes des généralisations. Le concept scientifique a ainsi un rapport médiatisé à l’objet. Vygotski précise :

> Les concepts scientifiques, avec leur tout autre rapport à l’objet, leur médiation par d’autres concepts, leur système interne hiérarchique de relations réciproques, sont le domaine où sans doute la prise de conscience
des concepts, c’est-à-dire leur généralisation et leur maîtrise, se développe au premier chef. Une fois qu’elle est apparue dans une sphère de la pensée, la nouvelle structure de généralisation est, en tant que principe d’activité, transférée ensuite, comme toute structure, à tous les autres domaines de la pensée et aux autres concepts sans aucun apprentissage. Ainsi les concepts scientifiques ouvrent la porte à la prise de conscience. (Vygotski, 1985, p.243)

Pour Vygotski, la prise de conscience progressive des concepts et des opérations suscite le développement de la pensée propre. Ainsi, il relie la révolution intellectuelle qui s’effectue à l’adolescence au développement des fonctions psychiques supérieures dont les racines sont la prise de conscience et l’intervention de la volonté.

Le caractère spontané des concepts quotidiens versus le caractère volontaire, non-spontané des concepts scientifiques

Selon Vygotski, une dépendance interne existe entre la prise de conscience et le caractère volontaire :

Nous maîtrisons une fonction dans la mesure où elle s’intellectualise. L’intervention de la volonté dans l’activité d’une fonction est toujours la contrepartie de la prise de conscience de celle-ci. (Vygotski, 1985, p.237)

Il explique pourquoi :

En généralisant un processus propre de mon activité, j’acquiers la possibilité d’un autre rapport avec lui. C’est en gros comme si ce processus était sélectionné dans l’activité générale de ma conscience. J’ai conscience que je me souviens, c’est-à-dire que je fais de mon propre souvenir l’objet de la conscience. Il y a sélection. D’une certaine façon, toute généralisation choisit un objet. C’est pourquoi la prise de conscience, conçue comme généralisation, conduit directement à la maîtrise.
Ainsi la prise de conscience repose sur une généralisation des processus psychiques propres, qui conduit à leur maîtrise. (Vygotski, 1985, p.243)

En d’autres termes, en portant mon attention sur la représentation d’un objet dans ma conscience, je développe un rapport tout autre à l’objet. Par la généralisation à laquelle conduit cette prise de conscience et le nouveau rapport à l’objet qu’elle engendre, sont rendues possibles d’autres actions vis-à-vis celui-ci. Ces actions sont éclairées par la conscience et ainsi dirigées volontairement. Selon Vygotski, cette prise de conscience se réalise par l’intermédiaire d’un système de concepts, construits sur des rapports de généralité particuliers entre ceux-ci, et la
conséquence de cette prise de conscience engendrée par le système en est le caractère volontaire lors de leur utilisation.

Le caractère non-systémique des concepts spontanés versus le caractère systémique des concepts scientifiques

Les concepts scientifiques, par leur nature propre, impliquent un système. La prise de conscience qui les caractérise se fonde sur une médiation à l’objet par d’autres concepts inclus dans la définition verbale. Une généralisation de type supérieur est ainsi formulée, et cette création nouvelle incorpore inévitablement un rapport avec les concepts initiaux, en plus du rapport à l’objet. Les premiers éléments d’un système sont ainsi en place. La prise de conscience et son caractère volontaire conséquent sont possibles uniquement parce qu’il existe un tel système de relations entre les concepts. Vygotski affirme :

> Si la prise de conscience d’un concept équivaut à une généralisation, il est alors parfaitement évident que la généralisation, à son tour, ne signifie rien d’autres que la formation d’un concept supérieur […] qui inclut dans son système de généralisation le concept donné en tant que cas particulier. Et s’il apparaît derrière le concept donné un concept supérieur, celui-ci implique nécessairement l’existence non pas d’un mais d’une série de concepts subordonnés, avec lesquels le concept donné a des rapports déterminés par le système du concept supérieur – sans quoi le concept supérieur ne serait pas supérieur au concept donné. Mais ce concept supérieur suppose en même temps une systématisation hiérarchique des concepts inférieurs au concept donné, qui lui sont subordonnés, et auxquels il est de son côté lié par un système tout à fait déterminé de rapports. Ainsi la généralisation d’un concept a pour conséquence que celui-ci est placé dans un système déterminé de rapports de généralité, qui représentent les liaisons les plus fondamentales, les plus naturelles et les plus importantes entre les concepts. La généralisation signifie donc à la fois prise de conscience et systématisation des concepts. (Vygotski, 1985, p.244-245)

Le système sur lequel se branchent les concepts scientifiques est ainsi construit sur des rapports hiérarchisés entre les concepts. Les concepts scientifiques prennent naissance grâce à ces rapports, et ils incluent en eux-mêmes quelque chose de ces rapports et du système. Selon Vygotski (1985), la différence essentielle entre les concepts spontanés et les concepts scientifiques concerne justement le caractère non-systémique des premiers et le caractère systémique des seconds. Les concepts spontanés ou quotidiens sont non conscients et non volontaires justement en raison de leur non systématisation, car la prise de conscience et le
caractère volontaire qu’elle entraîne ne peuvent se réaliser que par la formation d’un système fondé sur des rapports de généralité entre les concepts. Vygotski précise :

On saisit aussi pourquoi les concepts de l’écolier restent non conscients et involontaires. Pour prendre conscience de quelque chose et le maîtriser, il faut d’abord en disposer, avons-nous dit. Mais les concepts – ou plus exactement, les préconcepts, comme nous préférerions désigner d’un terme plus précis ces concepts non conscients de l’écolier qui n’ont pas encore atteint le stade supérieur de leur développement – apparaissent justement pour la première fois à l’âge scolaire, ne parviennent à leur maturité qu’au cours de cette période. Jusque-là l’enfant pense par représentations générales, ou complexes, comme nous avons appelé ailleurs cette structure initiale des généralisations, qui domine à l’âge préscolaire. Et, si les préconcepts n’apparaissent qu’à l’âge scolaire, il serait miraculeux que l’enfant puisse en prendre conscience et les maîtriser, car cela signifierait que la conscience est capable non seulement de prendre conscience et de maîtriser ses fonctions mais aussi de les créer à partir de rien, de les forger de toutes pièces, bien avant qu’elles ne se soient développées. (Vygotski, 1985, p.241)

Dans d’autres lignes, cet auteur écrit que la non conscience relève d’un développement incomplet du système de rapports de généralité, ou encore du développement d’un système de rapports de généralité de nature particulière. Cet auteur soutient :

L’étude du système des concepts enfantins à chaque stade donné montre que la généralité (les différences et les rapports de généralité – plante, fleur, rose) est le rapport le plus fondamental, le plus naturel et le plus fréquent entre les significations (concepts) où leur nature se manifeste et se révèle le plus complètement. Si tout concept est une généralisation, le rapport d’un concept à un autre est évidemment un rapport de généralité. (Vygotski, 1985, p.294)

Prenons l’exemple apporté dans cette citation, les relations entre les significations de mots rattachées aux mots fleur et rose. Au stade de la pensée par concepts-complexes, ces deux significations de mots sont au même plan. Il n’y a pas de relation d’inclusion mais une relation d’équivalence en quelque sorte. Cette relation, bien qu’elle ne suggère pas la hiérarchie des concepts scientifiques, suppose tout de même un rapport de généralité (ici, d’équivalence) entre les deux significations de mot. Ainsi, les concepts spontanés impliquent la présence des rapports de généralité qui sont d’un tout autre ordre : des rapports construits sur des liaisons empiriques. Vygotski précise :

Le principal résultat de la recherche est que les rapports de généralité entre les concepts sont liés à la structure de généralisation, c’est-à-dire aux stades
Il existe une interdépendance complexe entre les structures de généralisation et les rapports de généralité. Les rapports de généralité sont liés aux structures de généralisation inhérentes à chacun des stades de développement vers la pensée conceptuelle. Par conséquent, au stade de la pensée par complexes seront possibles entre les concepts les rapports entre les objets eux-mêmes, ceux-ci ayant le caractère d’une constatation purement empirique. Au stade de la pensée syncrétique, la pensée de l’enfant comportera une prédominance des liaisons empiriques et de la logique de la perception.

Développement interrelié des concepts spontanés et des concepts scientifiques

D’après Vygotski, les concepts spontanés et les concepts scientifiques sont tous deux intégrés dans un système unique de concepts où ils sont dans un processus d’interactions constantes :

Lorsque nous parlons du développement des concepts spontanés ou scientifiques, il s’agit du développement d’un processus unique de formation des concepts, qui, tout en s’effectuant dans des conditions externes et internes différentes, n’en a pas moins une nature unique et ne constitue pas en une lutte, un conflit et un antagonisme entre deux formes de pensée qui dès le début s’excluraient mutuellement. (Vygotski, 1985, p.222)

Ce système unique de formation de concepts, où les faiblesses des uns sont compensées par les forces des autres par des influences réciproques constantes, règle, de l’avis de Vygotski,

3 Selon Vygotski, le fait que les rapports de généralité soient intimement liés aux stades de développement de la généralisation suscite un autre phénomène, à savoir que le mouvement du général au particulier et du particulier au général sera aussi différent à chacun des stades : « C’est la loi générale. C’est là la clé pour étudier les rapports génétiques et psychologiques du général et du particulier dans les concepts enfants. Chaque stade de généralisation a son système de rapports et de généralité, la structure de ce système détermine l’ordre génétique des concepts généraux et particuliers, de sorte que le mouvement du général au particulier et du particulier au général dans le développement des concepts s’avère différent à chaque stade du développement des significations en fonction de la structure de généralisation qui domine à ce stade. » (Vygotski, 1985, p.296)
l’évolution de la pensée enfantine. Il explique les interrelations et les influences réciproques dans le développement respectif des concepts scientifiques et des concepts spontanés de cette façon :

Si l’on désigne les propriétés du concept qui viennent à maturité plus tôt, qui sont plus élémentaires, plus simples, comme des propriétés inférieures et celles qui se développent plus tard, qui sont plus complexes et liées à un maniement conscient et volontaire, comme des propriétés supérieures, on pourrait dire conventionnellement que le concept spontané de l’enfant se développe de bas en haut, des propriétés plus élémentaires et inférieures aux propriétés supérieures, alors que les concepts scientifiques se développent de haut en bas, des propriétés plus complexes et supérieures aux propriétés plus élémentaires et inférieures. Cette différence est liée au rapport différent, nous l’avons déjà mentionné, que le concept scientifique et le concept quotidien ont avec l’objet. (Vygotski, 1985, p.285)

Pour que ce développement soit possible, Vygotski précise qu’il est indispensable que les concepts spontanés, sur lesquels s’appuient les concepts scientifiques dans leur descente vers le bas, aient atteint un niveau suffisant de développement sans lequel les derniers concepts ne pourraient venir se greffer sur les premiers. Les concepts scientifiques, pour qu’ils puissent tirer profit de l’expérience concrète de l’enfant et du rapport plus direct à l’objet que les concepts spontanés comportent, doivent s’appuyer sur un niveau de développement où l’enfant dispose de ce qui doit être l’objet de sa prise de conscience. C’est à partir de ce niveau qu’il leur sera possible dans faire pénétrer les concepts spontanés dans la zone de la prise de conscience et de la volonté.

Ainsi les concepts scientifiques évoluent vers le bas en s’appropriant en quelque sorte la riche expérience concrète de l’enfant et en bénéficiant du rapport direct à l’objet inhérent aux concepts spontanés, mais en retour ils apportent à ces derniers une nouvelle structure qui leur permet, par un rapport maintenant médiatisé à l’objet par d’autres concepts, un rapport supra-empirique dira Vygotski (p.308), d’accéder à un niveau supérieur d’abstraction et d’action par le biais d’un nouveau reflet de la réalité dans la pensée. Il mentionne ailleurs :

Du point de vue de leur dynamique ils ont une histoire absolument différente : l’un a atteint ce niveau en ayant effectué la partie supérieure de son développement, l’autre est parvenu au même niveau en en ayant parcouru le tronçon inférieur. (Vygotski, 1985, p.286)
Développement et apprentissage scolaire: la zone de proche développement

Pour Vygotski (1985), développement et apprentissage scolaire font également partie d’un seul et même processus. Selon lui, il existe entre eux des rapports très complexes et indissolubles qui s’articulent de manière ingénieuse dans la zone proximale de développement, en liaison étroite avec le développement des concepts scientifiques et spontanés. Vygotski situe la zone de proche développement, ou zone proximale de développement, entre le niveau de développement présent de l’enfant, où il résout certains problèmes de manière autonome, et un autre niveau correspondant non plus à ce que l’enfant peut faire seul, mais au contraire à ce qu’il ne peut réaliser que dans le cadre d’une collaboration avec l’adulte. Vygotski résume l’ensemble de cette dynamique entre apprentissage scolaire et développement dans ces termes :

Nous pouvons maintenant tenter de généraliser ce que nous avons découvert. On peut dire que la force des concepts scientifiques se manifeste dans la sphère qui est entièrement définie par les propriétés supérieures des concepts – le caractère conscient et le caractère volontaire; c’est justement là que les concepts quotidiens de l’enfant révèlent leur faiblesse, tandis qu’ils sont forts dans la sphère de l’application concrète, spontanée, dont le sens est déterminé par la situation, dans la sphère de l’expérience et de l’empirisme. Les concepts scientifiques commencent à se développer dans la sphère du conscient et du volontaire et poursuivent leur développement en german vers le bas dans la sphère de l’expérience personnelle et du concret. Les concepts spontanés commencent à se développer dans la sphère du concret et de l’empirisme et évoluent vers les propriétés supérieures des concepts : le caractère conscient et volontaire. La véritable nature du lien qui unit dans leur développement ces deux lignes de sens opposé se manifeste dans toute son évidence : c’est *celui qui unit la zone de proche développement et le niveau de développement présent.*

Il est un fait absolument incontestable, indiscutable et irréfutable, c’est que le caractère conscient et le caractère volontaire des concepts, ces propriétés qui n’ont pas atteint leur plein développement dans les concepts spontanés de l’écolier, sont entièrement dans la zone de proche développement, c’est-à-dire qu’ils apparaissent et deviennent effectifs dans la collaboration avec la pensée de l’adulte. Cela nous explique non seulement que le développement des concepts scientifiques implique un certain niveau des concepts spontanés, niveau auquel le caractère conscient et le caractère volontaire apparaissent dans la zone de proche développement, mais encore que les concepts scientifiques transforment les concepts spontanés et les élèvent à un niveau supérieur en leur constituant une zone de proche développement : en effet ce l’enfant sait faire aujourd’hui en collaboration avec quelqu’un, il sera demain en état de le réaliser seul. (Vygotski, 1985, p.287).
Ainsi, par la médiation de l’adulte, les concepts scientifiques abordés dans le cadre scolaire ouvrent une nouvelle zone dans la pensée de l’enfant, en apportant aux concepts spontanés une prise de conscience et une maîtrise qu’ils n’avaient pas. Ces derniers sont transformés et élevés à un niveau supérieur à l’intérieur de la zone proximale de développement. L’apprentissage des concepts scientifiques joue ainsi un rôle déterminant dans le développement intellectuel de l’enfant. Cette dynamique conduit Vygotski à affirmer :

Ce que l’enfant sait faire aujourd’hui en collaboration, il saura le faire tout seul demain. C’est pourquoi il est vraisemblable qu’à l’école l’apprentissage et le développement sont l’un à l’autre ce que la zone de proche développement est au niveau du développement présent. Le seul apprentissage valable pendant l’enfance est celui qui anticipe sur le développement et le fait progresser. (Vygotski, 1985, p.273)

L’action éducative doit ainsi chercher à se déployer dans la zone de proche développement. Les seules bonnes situations d’apprentissage sont donc celles qui précèdent le développement, celles qui amènent l’enfant au-delà de ce qu’il peut réaliser de manière autonome, de façon à lui faire acquérir des conduites qu’il pourra accomplir de son propre chef plus tard. Sur cette note finale, les éléments sont en place pour la réflexion sur le rôle de l’autonomie dans l’apprentissage de l’enfant, selon notre propre interprétation de la théorie de Vygotski.

L’AUTONOMIE DE L’ENFANT

Cette dynamique de l’inter à l’intrapsychique porte sur un second plan le rôle de l’autonomie dans l’apprentissage. L’apprentissage des construits culturels (par exemple, les concepts scientifiques) doit devancer le seuil de développement présent de l’enfant afin de lui permettre d’accéder à des modes supérieurs de pensée. Ces objets sont le résultat d’un long cheminement et portent en soi la marque des relations sociales ayant contribué à leur émergence. Le monde scolaire avec ses contraintes ne peut s’attendre à ce que les élèves redécouvrent ces objets, qui de toute manière, ont une nature éminemment sociale, culturelle et historique. Ils doivent être apportés à l’enfant de l’extérieur. Un enseignement qui se limiterait aux seules actions que l’enfant peut réaliser de manière autonome, en raison de son niveau actuel de développement, aurait pour effet de freiner son évolution vers la maîtrise des outils sociaux de pensée. La médiation sociale des objets culturels ouvre la voie à d’autres possibilités d’action que l’enfant pourra accomplir seul de manière autonome dans le futur, après un travail accompagné par l’adulte. Cette médiation élargit le champ des actions autonomes de l’enfant.

À plusieurs endroits dans ses écrits, Vygotski précise que cela ne veut pas dire pour autant que l’apprentissage résulte d’une simple transmission de savoirs.

Il est difficile d’admettre que l’enfant assimilerait les concepts scientifiques sans les réélabore à sa manière, que ces derniers seraient tels des alouettes qui tombent d’emblée toutes rôties. L’essentiel est de voir que la formation des concepts scientifiques aussi bien que celle des concepts spontanés, loin de s’achever, ne fait que commencer au moment où l’enfant assimile pour la première fois une signification ou un terme nouveau pour lui, qui est porteur d’un concept scientifique. C’est la loi générale du développement des significations de mots, à laquelle le développement des concepts spontanés comme celui des concepts scientifiques sont au même titre soumis. (Vygotski, 1985, p.224-225)

L’enfant ne détermine pas de son propre chef la signification des mots. Celle-ci est fixée par la collectivité, pour des fins de communication. Toutefois, même si l’enfant utilise la même signification de mot dans sa communication avec l’adulte (par exemple, les pseudoconcepts), nous avons vu qu’il le fait avec des actes de pensée propre, qui sont de nature tout à fait différente. Ainsi, pour Vygotski, il n’est pas question de transmission, mais plutôt d’intériorisation, d’appropriation en fonction de la spécificité de pensée de l’individu. Les approches éducatives qui ne tiendraient pas compte de cette réalité sont vouées, dès le départ, à l’échec.
CONCLUSION
La redécouverte des écrits de Vygotski a eu un impact majeur, les idées de cet auteur influençant de nos jours les didacticiens de toute discipline. Il n’est plus question de constructivisme mais de socio-constructivisme. Sous cette terminologie, des croyances très diverses ont cours. Certains, sous l’influence d’une épistémologie empirique latente, y voient l’occasion de renouer, de manière non-consciente, avec l’approche classique de transmission des connaissances (déjà encore très présente dans les écoles) par le biais de l’utilisation de modèles en guise de médiation. Cette approche laisse peu de place à l’autonomie. De plus, elle démontre une incompréhension du fait que, bien qu’il s’agisse d’un passage de l’inter à l’intrapsychique, l’enfant acquiert les connaissances en fonction de son propre mode de pensée. Du terme socio-constructivisme, elle ne retient que l’aspect de transmission sociale et néglige celui relatif à la construction par l’enfant.
La critique adressée à Piaget de n’avoir considéré le développement que sous son aspect interne chez l’individu, peut être fait en sens inverse à Vygotski. Après avoir posé les deux lignes de développement, organique et historico-culturel, ce dernier a privilégié l’aspect social. Campés dans leur position, ces deux auteurs ont entraîné dans leur sillon nombre de penseurs. La didactique des mathématiques doit chercher à réconcilier ces deux points de vue. À notre avis, les théories piagétienne et vygotskienne, loin d’être antagonistes, sont complémentaires. L’adaptation chez l’humain relève à la fois de l’adaptation à son environnement physique et de
l’adaptation à son environnement social. On peut voir le processus d’appropriation des savoirs culturels comme répondant au besoin et à la nécessité de l’adaptation sociale.

Sur le plan de l’autonomie, il y a des apprentissages que l’enfant peut réaliser de manière autonome, comme réponse à la situation d’apprentissage. Par contre, il y a des savoirs qui ont une origine historico-culturelle qui ne peuvent être développés dans de telles situations. Ils doivent être apportés à l’individu de l’extérieur. Il faut donc concevoir qu’il y a des connaissances mathématiques qui peuvent être développées de manière autonome par l’enfant en réponse aux situations, et d’autres qui nécessitent la médiation de l’adulte au regard du niveau de développement actuel de l’élève et de la zone de proche développement.

En conclusion, dans l’enseignement des mathématiques ce n’est pas tant l’autonomie qu’il faut privilégier chez l’élève que le projet personnel de construction de sens dans tous contextes d’apprentissage.

RÉFÉRENCES

COMMUNICATIONS

Diane Gauthier
En collaboration avec Jean-Robert Poulin
Université du Québec à Chicoutimi

Les paramètres didactiques essentiels au développement de l’autonomie des élèves ayant une déficience intellectuelle intégrés dans les classes ordinaires du primaires.

Résumé : Le présent article décrit une situation d’enseignement apprentissage des mathématiques conçue par des enseignants de la première année du primaire de la région du Saguenay Lac St-Jean qui expérimentent pour une première fois dans un contexte d’intégration des élèves ayant une déficience intellectuelle, les principes de l’apprentissage coopératif. L’analyse de cette situation permet de faire émerger quelques constats didactiques concernant principalement, le rôle des enseignants lors de la conception et de la réalisation en classe de l’activité, le partage des responsabilités entre les élèves d’une même équipe et l’implication des élèves ayant une déficience intellectuelle au sein de leur équipe de travail.

Problématique :
Le programme de formation de l’école québécoise (2001) mentionne que l’une des missions de l’école est d’avoir un rôle d’agent de cohésion en contribuant à l’«apprentissage à la collectivité». L’école doit donc chercher à prévenir les risques d’exclusion qui compromettent l’avenir de trop de jeunes. Elle se doit également de rendre possible la réussite scolaire de tous les élèves et de faciliter leur intégration sociale et professionnelle. Parce qu’ils ont des besoins particuliers (Farlow, 1994 ; Pomplun 1997), les élèves ayant une déficience intellectuelle peuvent être victimes d’exclusion. Sur le plan cognitif, ces élèves se caractérisent par un retard dans le développement de leurs structures intellectuelles, par un déficit d’attention et de mémoire à court terme, par des difficultés de transfert et de généralisation ainsi que par un manque de stratégies cognitives et métacognitives (Dionne, Langevin, Paour et Rocque 1999).
Actuellement dans les écoles québécoises, peu d’actions pédagogiques permettent la participation conjointe des élèves ordinaires et des élèves ayant une déficience intellectuelle et ce, même s’ils sont inscrits dans le même groupe. Lorsque des élèves ayant une déficience intellectuelle sont intégrés dans une classe ordinaire, ils doivent plusieurs fois par semaine, quitter leur groupe d’appartenance pour la classe spéciale. Les enseignants du primaire déplorent ainsi le peu de moyens dont ils disposent pour faciliter l’intégration des élèves ayant une déficience intellectuelle principalement lors des situations d’enseignement apprentissage des mathématiques.

L’apprentissage coopératif constitue une méthode d’apprentissage (Sapon-Shevin et al. 1990) qui permet aux enseignants de structurer l’environnement éducatif et social de leur classe pour que leurs élèves puissent développer les habiletés et les aptitudes requises afin d’interagir au-delà de leurs différences et de leurs difficultés. Le terme apprentissage coopératif fait référence à un ensemble de méthodes d’enseignement qui favorisent le travail en groupe (Murray 1994). La classe est divisée en groupes de trois à six élèves habituellement du même âge, mais hétérogènes quant au sexe, aux aptitudes et à l’origine ethnique. Les élèves apprennent à coopérer dans l’apprentissage. La réussite est le résultat de la mise en commun des efforts de chacun. Ce qui implique un partage du matériel, la distribution du travail à accomplir et la présentation d’une seule solution partagée par le groupe. Murray (1994) soutient que les principes théoriques les plus importants de l’apprentissage coopératif s’appuient sur les constructions sociales du développement de l’intelligence (Vygotsky, 1934). Cette théorie concerne l’actualisation des fonctions mentales de l’humain qui trouveraient leur origine dans les relations sociales. Dans cette perspective, le fonctionnement mental représente une version intériorisée et transformée des réalisations de groupe. La coopération entre les membres d’un groupe d’apprenants devient alors essentielle au développement cognitif. Elle constitue le moyen par lequel l’apprentissage se fait.

Dans une salle de classe, le travail en interaction des élèves favorise l’émergence de réponses variées face à un problème donné. Ces réponses sont le résultat des différences de centrations ou de points de vues des élèves. Il se produit alors un double déséquilibre chez l’élève (Doise, Mugny, 1981). Un déséquilibre inter-individuel à cause de la présence de différentes réponses émises par les élèves. Un déséquilibre intra-individuel par la conscientisation de la pertinence d’une autre réponse qui génère un doute sur la sienne. Pour Gilly (1989), il ne faut pas réduire
Cette situation à un simple problème cognitif individuel. Par la nature sociale des activités de la classe, les élèves sont donc amenés à coordonner leurs points de vue en un nouveau système qui permette un accord entre-eux. Comme l’affirment Doise et Mugny (1981), la recherche du dépassement du déséquilibre cognitif interindividuel provoque alors un dépassement du déséquilibre intra-individuel. C’est ainsi que ces chercheurs soutiennent la thèse centrale de Vygotsky (1934) selon laquelle le développement de toutes les fonctions supérieures se fait par transformation d’un processus inter-personnel en un processus intra-personnel.

La construction des savoirs par les interactions entre individus (Musatti et al. 1987) s’effectue dans des relations dont certaines sont asymétriques et d’autres symétriques, favorisant des modalités d’acquisition différentes. La notion de la relation asymétrique réfère à l’interaction établie entre un individu dont les compétences dans un domaine déterminé sont plus avancées que celle du sujet ou encore, à une différence de statut social entre les personnes impliquées dans les interactions. À l’âge scolaire, les situations d’acquisition de savoirs entre enfants se font par des relations à la fois symétriques et asymétriques. Les relations symétriques, porteuses de l’équivalence de compétences et de statuts, conservent une importance primordiale puisqu’elles sont génératrices de conflits sociocognitifs (Mugny, Doise, 1983). Wertsh et Stone (1985) soulignent le rôle majeur de la fonction médiatrice du langage lors de situations de conflits sociocognitifs. Le langage social qui est un outil de communication pour agir sur l’autre devient alors un outil de contrôle interiorisé pour agir sur soi-même.

La présente étude fait état de l’une des douze situations d’enseignement apprentissage conçues et appliquées dans le cadre d’une recherche, par des enseignants du primaire dans les classes ordinaires qui accueillent des élèves ayant une déficience intellectuelle. Elle a pour objectif d’identifier les paramètres didactiques essentiels à l’établissement de la coopération entre les élèves ordinaires et les élèves ayant une déficience intellectuelle placés au sein d’une même équipe de travail lors d’une situation d’enseignement apprentissage des mathématiques.

Méthodologie

Amorcée, il y a quatre ans dans la région du Saguenay Lac Saint-Jean, cette recherche-action (Gauthier, Poulin, 2003 ; Poulin, Gauthier, 2003, 2002, 2000,) se propose, par le développement de situations d’enseignement apprentissage des mathématiques impliquant les élèves ordinaires et
les élèves ayant une déficience intellectuelle, d’enrichir la connaissance des facteurs qui peuvent influencer l’efficacité de l’apprentissage coopératif dans un contexte d’intégration scolaire. Cette recherche est qualifiée de recherche-action « pratigamico-interprétative », elle implique de par l’expérimentation dans un contexte de classe, le développement personnel et professionnel des enseignants concernés (Savoie-Zajc 2001). Car suite à l’expérimentation en salle de classe, aux partages des observations provenant de différentes situations didactiques avec les membres de la recherche et à la réflexion personnelle qui en résulte, il y aura émergence d’une connaissance plus approfondie au sujet de l’intégration scolaire et modifications possibles de certaines pratiques éducatives (Bourassa et al. 1999). Les chercheurs-experts ont en ce qui les concerne, le rôle de facilitateur de la dynamique de la réflexion. Ils se sont entièrement engagés de le processus d’action, d’observation et de réflexion.
Pour concevoir et appliquer une activité d’apprentissage coopératif des mathématiques visant la participation en équipes mixtes d’élèves ayant une déficience intellectuelle et d’élèves ordinaires du primaire, les enseignants s'appuient sur les cinq critères fondamentaux inhérents aux rapports actifs de coopération en situation d'apprentissage coopératif établis par Johnson et Johnson (1994). Il s'agit de l'interdépendance positive, de la responsabilité individuelle, de l'interaction face à face, des habiletés sociales et de l'analyse du processus.
Le cas à l’étude est celui d’une situation d’apprentissage impliquant deux enseignants (une femme et un homme) expérimentés en enseignement dans les classes ordinaires du primaire. Ils ont en moyenne dix ans d’expérience. Ils sont tous les deux titulaires d’une classe ordinaire de la première année et intègrent pour la première fois dans leur classe, un élève trisomique. Leur formation initiale en enseignement a été effectuée dans le domaine de l’adaptation scolaire. Ils n’avaient que peu de connaissances sur les principes de l’apprentissage coopératif, ils ont été
préparés dans le cadre de nos activités de formation. Leur participation à la recherche a pour but la modification et l’adaptation de leur pratique éducative au contexte de l’intégration scolaire. Les deux élèves trisomiques (un par groupe) qui participent à l’activité sont âgés de huit (8) ans, il s’agit d’une fille et d’un garçon. Le classement de ces élèves ne correspond pas toujours à leur âge chronologique. Placer ces élèves trisomiques âgés de 8 ans dans des groupes de la première année où les élèves ordinaires ont en moyenne six ans, aura pour effet de réduire la distance cognitive entre les enfants.
Il est important de souligner que ces élèves vivent une situation d’intégration partielle dans la classe de la première année. Ils sont très bien acceptés socialement par le groupe. L’activité d’apprentissage coopératif représente leur première participation à la classe de mathématiques. Pour faire des apprentissages dans le champ disciplinaire des mathématiques, ces élèves vont dans la classe spécialisée. Lors de situations d’enseignement apprentissage des mathématiques de leur groupe, les élèves trisomiques sont normalement reçus dans la classe de la maternelle pour y faire du bricolage.
Les enseignants de la première année, effectuent un travail de conceptualisation en commun. Ils élaborent le contenu de chacune des périodes de la séquence d’enseignement et établissent les conditions de réalisation de cette séquence. Le contenu des périodes est décrit de la façon la plus complète possible de manière à ce que les conditions didactiques et matérielles soient

La séquence d’enseignement apprentissage produite, est divisée en trois périodes de vingt (20) minutes chacune. Deux savoirs essentiels (MEQ 2001) sont ciblés par la réalisation de cette séquence. Le premier savoir concerne le développement de l’habileté de la gestuelle de la mesure. L’élève de la première année apprend à mesurer la longueur de différents objets avec des instruments de mesure non conventionnels. Pour affirmer qu’un élève de ce niveau sait mesurer, il doit être capable d’aligner une suite de petits objets similaires le long de l’objet à mesurer, de les dénombrer et d’affirmer que la valeur numérique obtenue est la mesure de la longueur. Le deuxième savoir essentiel porte sur l’identification d’une nouvelle unité de mesure « le décimètre » et l’établissement d’une hiérarchie entre le mètre que les élèves connaissent déjà et le décimètre.

Lors de la première période, les élèves réalisent la tâche individuellement. Ils sont tout de même placés en triades de façon à pouvoir se consulter et s’apporter de l’aide au besoin. Chaque élève mesure deux fois le dessus de son bureau. D’abord avec des trombones et une deuxième fois avec des bouts de ruban. Ils dénombrent et notent ensuite sur une feuille remise par l’enseignant le nombre d’instruments utilisés pour chaque mesure. À cette étape de l’activité aucune référence n’a été faite au système métrique. Les élèves ignorent les dimensions respectives des trombones et des bouts de ruban. On termine cette période par la comparaison des résultats obtenus avec les différents instruments et il y a discussion en groupe.

Au cours de la deuxième période de cette séquence chaque enseignant fait un retour sur l’instrument de mesure appelé le « mètre ». L’enseignant montre une règle mesurant un mètre et demande à ses élèves de pointer des objets dans la classe qui sont de la même dimension que ce mètre ensuite on compare avec des objets plus petits ou plus grands. À chaque fois qu’un élève fait une remarque en comparant un objet avec le mètre, il doit justifier sa réponse.

La troisième période se divise en deux parties. Dans un premier temps, l’enseignant reprend les bouts de ruban de la première période de la séquence et les place les uns à la suite des autres sur la règle de un mètre. Il demande ensuite à un élève de compter le nombre de bouts de ruban
placés sur cette règle. L’élève effectue le dénombrement, l’enseignant demande ensuite à un autre élève de vérifier les résultats. L’enseignant souligne qu’il faut vraiment dix (10) bouts de ruban pour couvrir ce mètre que les résultats ont été vérifiés par deux collègues. Chaque bout de ruban porte un nom : le décimètre. Les élèves s’expriment sur l’unité la plus longue et l’unité la plus courte : le mètre est plus grand que le décimètre, le décimètre est plus petit que le mètre. Il faut combien de décimètres pour couvrir un mètre.

Ensuite, les élèves travaillent en équipes, ils sont placés en triades. La composition des équipes a été déterminée par les enseignants. Les enseignants choisissent des élèves qu’ils jugent performants en mathématiques pour faire équipe avec un élève ayant une déficience intellectuelle de leur groupe. Ces coéquipiers sont préalablement informés qu’ils travailleront avec l’élève trisomique. Ils sont invités à lui porter assistance lorsqu’il ou elle en manifeste le besoin. De plus, il faudra les laisser manipuler à leur tour et ne pas faire des choix à leur place.

Dans l’application de la pédagogie du projet, les enseignants ont réalisé la deuxième partie de l’activité en accord avec le choix du thème à l’étude pour la semaine : « Le Jardin ». Grâce aux différentes activités reliées à l’apprentissage des mathématiques et du français de la semaine, les élèves prennent contact de façons diversifiées avec les produits du jardin. Chaque équipe reçoit alors un bout de ruban d’un décimètre de long et huit (8) dessins dont quatre de citrouilles et quatre de céleris, de dimensions variées. Il y a deux dessins parmi les huit qui mesurent un décimètre, une citrouille et un céleri. La tâche consiste à identifier parmi ces dessins lesquels mesurent un décimètre de long. Pour se faire, les élèves utilisent leur bout de ruban qu’ils placent sur chaque dessin dans le sens de la longueur. Ils peuvent discuter entre eux et apporter de l’aide à un coéquipier pour déterminer quel est le sens de la longueur et placer adéquatement le bout de ruban sur le dessin. Lorsque le choix de l’équipe est effectué, un coéquipier lève la main et demande l’assistance de l’enseignant pour valider les réponses de son équipe. S’ils reçoivent l’approbation de l’enseignant, les coéquipiers inscrivent à tour de rôle leur nom sur les dessins choisis. Ensuite, le responsable de l’équipe se dirige vers le mur arrière de la classe où il colle sur un grand carton représentant un jardin, les dessins d’un décimètre chacun.

Analyse didactique de chacune des périodes de la séquence

L’analyse didactique de cette séquence concerne l’identification des éléments mis de l’avant par les enseignants lors de la conception des situations d’enseignement apprentissage des mathématiques pour générer des interactions sociales porteuses de coopération entre les élèves.
ordinaires et des élèves ayant une déficience intellectuelle dans un contexte d’intégration. L’analyse portera également sur les interactions entre les enseignants et les élèves en situation d’apprentissage et finalement, sur l’appropriation du rôle de médiateur par les enseignants lors de l’émergence d’un conflit socio-cognitif.

Avant de laisser les élèves lire les consignes et s’expliquer entre eux la façon de faire, l’enseignant fait un petit retour en groupe sur la mesure de la longueur sur une figure plane comme le rectangle. Il y a également plusieurs représentations de rectangles affichées sur les murs de la classe. Le rectangle représente une forme géométrique similaire au dessus du bureau des élèves et tous les bureaux sont identiques. Plusieurs élèves répondent sans hésiter que c’est le côté le plus long. L’enseignant choisit un élève et lui demande de montrer en traçant un trait, le côté le plus long de chacun des deux rectangles (de dimensions variées), dessinés au tableau et inversés l’un par rapport à l’autre. L’enseignant valide la réponse de l’élève et ces exemples sont conservés au tableau.

La première période suscite la participation active de tous les élèves. Ils ont tous facilement repérés le côté le plus long du dessus de leur bureau. Il faut toutefois mentionner que plusieurs élèves agissent par imitation et placent les instruments de mesure non conventionnels en regardant attentivement les gestes des coéquipiers.

La jeune fille trisomique circule beaucoup dans la classe. Elle va d’une équipe à l’autre. À quelques reprises, l’éducateur la ramène auprès de ses collègues. Lorsque cette élève remarque que ses collègues alignent des trombones de différentes couleurs les uns à la suite des autres sur leur bureau, elle veut faire comme eux. Elle n’accepte cependant pas facilement les conseils de ses coéquipiers. L’enseignant lui demande pourquoi elle place ainsi des trombones sur son bureau, elle répond que les amis ont dit de faire comme ça. Elle ne semble pas comprendre vraiment que l’action implique la mesure de la longueur de son bureau mais elle veut reproduire les mêmes gestes que ses collègues. Elle ne peut dénombrer adéquatement la quantité de petits objets utilisés pour mesurer la longueur du bureau. Suite à une intervention de l’éducateur spécialisé, elle accepte que ses coéquipiers lui viennent en aide pour dénombrer et répète le nombre obtenu. Une collègue lui indique où et comment inscrire le résultat.

Le garçon trisomique semble apprécier la présence des coéquipiers qui lui donnent des conseils pour placer adéquatement les instruments de mesure non conventionnels les uns à la suite des autres. Au début de l’activité, il dit à ses coéquipiers qu’il ne veut plus faire du bricolage avec les
« bébés » de la maternelle. « Je suis capable maintenant » dit-il. Il faut mentionner que c’est la deuxième année qu’il participe aussi à des activités en classe maternelle. Pour le dénombrement, il éprouve moins de difficulté que la jeune fille trisomique. Il se fait tout de même assister par ses coéquipiers pour répéter la suite des nombres et noter les résultats obtenus. Il n’est pas questionné sur le but de l’exercice.
Durant cette première partie de la séquence, l’enseignant circule et répond aux questions des élèves. L’enseignant prend tantôt le rôle d’un médiateur, tantôt le rôle d’un agent de discipline pour l’ensemble de son groupe. À la fin de l’exercice, l’enseignant demande aux élèves de présenter les résultats obtenus avec des trombones et des bouts de ruban pour la mesure de la longueur de leur bureau. Un responsable par équipe donne les résultats verbalement à l’enseignant qui les inscrit au tableau : d’un côté le nombre de trombones et de l’autre le nombre de bouts de ruban. Cette façon de les écrire permet de faire une comparaison des résultats obtenus entre les équipes pour un même instrument non conventionnel et d’effectuer également une deuxième comparaison entre les trombones et les bouts de ruban pour chaque équipe. Lorsque tous les résultats sont inscrits au tableau, l’enseignant demande aux élèves si tous les bureaux sont de la même dimension. Les élèves répondent positivement.
Pour la mesure effectuée avec les bouts de ruban, toutes les équipes obtiennent les mêmes résultats et laissent un petit espace (moins de 1 cm) de la longueur du bureau non recouvert par un ruban. Les enseignants ont fait des choix didactiques en regard des savoirs essentiels proposés par le programme de mathématiques de la première année. Ils donnent plus d’importance à l’acquisition de la gestuelle de la mesure auprès de leurs élèves. Il n’est pas question pour le moment de vérifier la précision de la mesure.
Durant la deuxième période de la séquence d’enseignement, les élèves écoutent l’enseignant qui fait une révision de la notion de mètre. Dans un premier temps, il pose des questions sur l’utilité de l’instrument : « à quoi cela sert-il »? Quelques élèves lèvent la main pour répondre. Ensuite, tenant le mètre au bout de ses bras, il demande aux élèves de lui dire le nom de l’instrument. Il est à noter que tous les élèves incluant les élèves trisomiques, avaient la main levée et étaient désireux d’exprimer leur réponse. Les enseignants de chacun des groupes adoptent le même comportement face à la validation de la réponse. Ils sollicitent quelques élèves qui expriment à tour de rôle leur réponse et après les avoir entendus, demandent au groupe de se prononcer sur les choix proposés.
Le garçon trisomique a été amené à exprimer sa réponse devant le groupe. Elle était excellente. Il faut souligner qu’il n’a pas été le premier à répondre. Il est possible que sa réponse ait été influencée par le choix de ses collègues. Cet élève qui éprouve des troubles d’attention, est demeuré attentif pendant toute la durée de la période. La jeune fille trisomique accepte de répondre la première à une question qui lui est posée directement devant les autres élèves. Pourtant, elle a toujours refusé de lire à voix haute des consignes ou de répondre à une question. L’enseignante réussissait à la faire participer seulement lorsqu’elle était à côté de son bureau et qu’elle pouvait répondre à voix basse. Elle semble manifester de l’intérêt pour exprimer ses réponses devant le groupe. Selon les commentaires des enseignants, on assiste à des modifications du comportement des élèves trisomiques qui deviennent plus participatifs lors des activités de leur groupe classe.

Les élèves sont ensuite amenés à comparer la dimension de certains objets dans la classe avec le mètre. Ils peuvent se consulter et discuter avec un collègue qui est près d’eux afin de vérifier si l’objet choisi est plus grand, plus petit ou égal au mètre. Il y a un mètre de disponible par équipe. Il aurait été préférable d’avoir quelques mètres de surplus afin que certains élèves éprouvant de la difficulté à établir une comparaison avec un autre objet puissent le manipuler sans trop attendre, ni perdre de l’intérêt. Les élèves trisomiques et certains autres élèves ordinaires du groupe démontrent de la difficulté à faire le choix d’un objet à comparer avec le mètre. Les enseignants auraient dû faire des suggestions ou encore présenter une liste d’objets aux élèves à partir desquels ils auraient pu établir des comparaisons. Les enseignants circulent entre les équipes, ils sont surtout centrés sur le respect de la discipline plutôt que sur un questionnement permettant de mettre en lumière le raisonnement des élèves face à la tâche qui leur est confiée et les attentes qu’ils ont formulées. Vers la fin de la période les enseignants vont même jusqu’à donner des réponses concernant le résultat de la comparaison entre le mètre et un objet sans avoir préalablement écouté le raisonnement de leurs élèves. Le manque de temps vient alors changer la consigne du départ. On doit fermer la situation didactique avec la fin de cette période.

La troisième période est composée d’une première activité où les élèves assistent l’enseignant et où ils peuvent émettre leur opinion. Ce genre d’activité plaît bien aux élèves de la première année. Ils se portent tous volontaires pour assister l’enseignant. Devant le mouvement des élèves de son groupe, le garçon trisomique devient alors agité et l’enseignant se doit d’intervenir à quelques reprises afin qu’il demeure à sa place et qu’il attende qu’on le sollicite pour exprimer sa
réponse. Dans la deuxième partie, les élèves regroupés en triades doivent reconnaître parmi les huit dessins de dimensions variées qui leur sont remis, lesquels mesurent un décimètre de longueur. Les élèves trisomiques ont de la difficulté à identifier la longueur, soit le côté le plus long du dessin. Ils se font assister par un collègue de l’équipe pour placer adéquatement le bout de ruban dans le bon sens. Il devient tout de même assez facile, une fois le bout de ruban bien placé d’identifier le dessin qui possède les mêmes dimensions que l’instrument de mesure.

Le dessin de la citrouille, étant plus large que haut, représente un problème pour certains élèves. L’enseignant remarque que plusieurs équipes ont des hésitations. Il y a des discussions entre les élèves, car depuis le début de la séquence, la longueur des objets à mesurer était placée à la verticale, maintenant chez la citrouille la longueur du dessin est à l’horizontale. Certains élèves refusent de changer le sens de la mesure. D’autres soutiennent que cela est nécessaire. On assiste alors à l’émergence d’un conflit socio-cognitif, conduisant à une remise en question chez certains élèves de la position du paramètre de la longueur dans une figure plane (Carugati et Mugny, 1985 ; Gilly 1989). Devant l’augmentation éminente du niveau de bruit dans la classe, occasionnée par les discussions des élèves, les enseignants ont opté pour le rôle de gestionnaire de la discipline plutôt que pour le rôle de médiateur. Les enseignants auraient pu relancer l’argumentation soutenue par leurs élèves en utilisant des questions pour approfondir la réflexion et ainsi les amener à une sorte de régulation cognitive, ce qui est porteur de progrès intellectuel (Doise et Mugny, 1981).

a mis fin au bruit dans la classe et le conflit socio-cognitif est disparu. Il n’y a pas eu de négociation de sens sur l’identification de la longueur d’une figure lorsque celle-ci n’est pas à la verticale puisque le choix du dessin est prescrit par l’enseignant. En absence de négociation de sens, il est possible qu’il n’y et pas eu d’apprentissage (Mugny et Doise, 1983). Les équipes se sont mises d’accord rapidement sur le choix du dessin de la citrouille d’un décimètre de longueur. Les enseignants valident ensuite les choix des équipes où tous les résultats sont bons. Dans l’équipe où est impliquée la jeune fille trisomique, celle-ci demande à l’enseignante la permission d’aller coller les dessins sur le mur arrière de la classe. Ce qui démontre une fois de plus un intérêt nouveau de la part de cette élève pour participer aux activités de la classe.
Dans chacun des deux groupes de la première année, les enseignants ont choisi de placer l’élève trisomique en compagnie de deux élèves performants en mathématiques. Ces élèves avaient été informés sur leur rôle de « mini-prof » et sur le genre d’accompagnement qu’ils avaient à procurer à leur coéquipier. Les enseignants établissaient alors entre les élèves de ces triades des interactions asymétriques qui sont porteuses de relation d’aide (Bruner 1983). Comme il a été mentionné par Musatti et al. (1987), les élèves perçoivent une différence de statut entre les coéquipiers. Dans cette perspective, le mécanisme qui sous-tend le développement des connaissances est la transmission sociale, un élève donne l’information et l’autre la reçoit. Sans exercer directement de contrôle sur la tâche, les enseignants s’assuraient que quelqu’un pouvait temporairement les remplacer auprès de l’élève trisomique.
Tout porte à croire que lors de la troisième période de la séquence d’enseignement apprentissage au sujet de la mesure de la longueur des citrouilles et des céleris, les interactions entre les élèves ordinaires et les élèves ayant une déficience intellectuelle étaient de nature symétrique. Ce qui implique que les élèves se perçevaient entre eux avec une certaine équivalence de compétences concernant la pertinence des réponses qui étaient présentées. Les auteurs Musatti et al. (1987) ; Mugny et Doise, (1983), soulignent d’ailleurs que les interactions symétriques sont porteuses de l’équivalence de compétences et de statuts, et sont également génératrices de conflits socio-cognitifs. Ce qui a été observé lors de cette troisième période.
À partir du témoignage des enseignants et à la lecture des événements, une certaine insécurité perdure chez les enseignants face à l’appropriation par leurs élèves des principes de l’apprentissage coopératif. Ces enseignants, qui ont une formation initiale en adaptation scolaire, ont pourtant monté des activités d’introduction aux principes de l’apprentissage coopératif.
adaptées à leur groupe respectif et ils ont vérifié le fonctionnement de cette méthode d’apprentissage préalablement à la séquence enregistrée.

Lors de l’analyse de la séquence, les enseignants ont affirmé qu’ils ne possédaient pas toute l’aisance essentielle pour entretenir le rôle de médiateur pendant les situations de conflits socio-cognitifs. Le silence et l’ordre représentent à leurs yeux des éléments indispensables autour desquels l’apprentissage doit se greffer. Même s’ils étaient volontaires pour questionner leurs pratiques éducatives et pour recevoir une session de formation sur les principes de l’apprentissage coopératif, certains éléments devront être ajustés. Ces éléments concernent principalement la gestion des conflits socio-cognitifs et l’appropriation du rôle de médiateur par les enseignants.

Conclusion

L’application des principes de l’apprentissage coopératif dans une classe vivant l’intégration scolaire d’élèves ayant une déficience intellectuelle aura toutefois permis de rendre ces élèves plus actifs dans leur apprentissage. Les deux élèves trisomiques ont accepté de participer avec tout leur groupe au déroulement des activités mathématiques qui leur étaient présentées. Ils se sont portés volontaires pour répondre aux questions de l’enseignant. Ce qui n’était pas anticipé surtout de la part de la jeune fille trisomique. Le travail en triade avec l’assistance des coéquipiers aura rendu cette jeune fille plus confiante dans l’expression de ses réflexions devant le groupe. Les élèves ordinaires ont collaboré positivement à l’activité en répondant aux questions et en portant assistance au besoin. Il y a eu évidence de coopération entre les élèves tout au long des activités d’enseignement apprentissage et émergence d’un conflit socio-cognitif ce qui témoigne de la possibilité de faire générer des apprentissages dans un contexte d’intégration scolaire d’élèves ayant une déficience intellectuelle.

Références Bibliographiques

Actes du colloque du GDM-2003 56

France Caron
Université de Montréal

Les technologies dans les cours de mathématiques :
catalyseur ou poudre aux yeux?

Résumé : Au fur et à mesure de leur évolution, les technologies ont connu différentes formes d'intégration dans l'enseignement des mathématiques. En faisant un bref parcours de l'histoire récente de cette intégration, nous constatons que l'utilisation typique des outils technologiques ne fait pas toujours appel au jugement critique de l'élève et n'étend presque jamais les apprentissages mathématiques au-delà ce qu'il était possible de faire sans cette technologie. Nous concluons avec quelques propositions curriculaires qui pourraient contribuer au développement d'une plus grande autonomie de l'élève dans l'utilisation de ces technologies.

INTRODUCTION
Les raisons typiquement invoquées pour prôner l'intégration des technologies dans l’enseignement des mathématiques, semblent partager au départ un certain souci de l’autonomie de l’élève : « l’élève peut être plus actif dans son apprentissage » ; « la conjonction de représentations numériques, graphiques et symboliques est propice à un travail conceptuel » ; « les environnements dynamiques favorisent l’expérimentation dans la résolution de problèmes » ; « l’élève développe une familiarité avec les outils qui caractériseront son futur environnement de travail » ; « il peut désormais aborder des problèmes plus complexes » ; etc. Mais quand on examine l’usage qui est fait des technologies dans l’enseignement des mathématiques au secondaire, peut-on soutenir que cette intégration contribue systématiquement au développement de l’autonomie chez les élèves?

Dire que la technologie contribue au développement de l’autonomie demande de préciser le contexte et l’horizon de temps où pourra s’exercer cette autonomie. Une ambition modeste dans le temps et l’espace peut simplement viser l’autonomie dans la classe où, par l’usage de didacticiels, l’élève paraît pouvoir évoluer à son rythme, de façon indépendante du groupe. On peut aussi vouloir développer chez l’élève une autonomie avec loutil technologique, qu’on souhaite transférable à d’autres disciplines ou applications, en mettant à contribution des outils relativement répandus et typiquement plus ouverts dans une démarche d’exploration et de construction. On peut aller plus loin en visant une véritable autonomie dans une pratique
mathématique instrumentée, qui permette de juger quand et comment faire contribuer les technologies à cette pratique, en en faisant connaître à la fois les apports et les limites. Cette vision requiert une compréhension plus fine des liens entre mathématiques et informatique, et peut éventuellement ouvrir la voie à une compréhension du rôle des mathématiques dans les développements technologiques. On pourra alors parler d’une autonomie mathématique dans un monde technologique.

LA TECHNOLOGIE TOLERÉE

ENRICHISSEMENT

1. Effectuez les calculs suivants:

 a) \[
 -1 \times \frac{10}{16} \times \frac{39}{13} \times \frac{-2}{4} \times \frac{5}{3}
 \]

 b) \[
 7,1265 - 5,1 \times 0,013 + 1,004
 \]

Ce climat de méfiance se doublait d’une volonté de mettre à jour les caractéristiques, apports et limites de l’outil, visant ainsi une certaine autonomie dans la pratique mathématique instrumentée, en dépit des limites relatives de cette instrumentation. Par exemple, l’exercice

8. Effectue la séquence suivante:

\[
8 + 2 \times 3 =
\]

- Si tu obtiens 30 (…)
- Si tu obtiens 14 (…)

Dans cette volonté d’expliquer l’outil, on en venait à éléver au rang de *savoir* les touches de la calculatrice, comme en témoigne l’extrait suivant de *Mathématique Soleil 4* (1986, p.311). Si cela pouvait conduire à un travail syntaxique qui n’était pas sans intérêt, il y avait toutefois le risque de réduire les fonctions mathématiques à de simples touches sur la calculatrice.

LA TECHNOLOGIE RESPECTÉE

Dans les années 80, parallèlement à un usage de plus en plus répandu de la calculatrice, on a assisté à l’émergence et à la démocratisation de l’ordinateur personnel qui ouvrait un tout nouvel horizon à l’intégration des technologies en mathématiques. D’interface initialement peu conviviale, avec peu de logiciels disponibles pour l’enseignement des mathématiques, ces nouveaux outils invitaient ceux qui s’y intéressaient à développer des habiletés de programmation et à « bricoler » des applications pédagogiques. Ce fut l’époque dorée des exercices, où l’on semblait assister à une *programmation mutuelle* entre l’homme et la machine.

Par ailleurs, ce nouvel accès à la programmation amenait à en reconnaître les apports pour les mathématiques (exigences de rigueur d’explicitation, structuration de la démarche, nouvelles approches de résolution) et à vouloir en intégrer l’apprentissage à celui des mathématiques.
(Rouchier, 1992 ; Mandelbrot, 1994). On retrouvait donc, ici et là dans les manuels de mathématiques, des programmes mathématiques en langage BASIC qui pouvaient s’étaler sur quelques pages. Les élèves pouvaient ainsi « voir » des énoncés d’affectation, de branchement, des boucles, des incrémentations de compteurs, des énoncés conditionnels, etc. Mais tout ce déploiement n’était assorti d’aucune explication, car on devait bien se douter qu’il ne serait repris que par les enseignants qui avaient fait eux-mêmes l’expérience de la programmation. Et dans les faits, ça n’était que très rarement utilisé en classe, car le temps requis pour un tel apprentissage, autant chez les enseignants que chez les étudiants, s’instaurait en obstacle difficilement surmontable. Néanmoins, cela a pu donner lieu à une exploration autonome chez ceux qui avaient accès à un ordinateur, à une forme d’auto-enseignement par la reproduction, contribuant ainsi à alimenter un intérêt pour l’informatique chez certains étudiants (Caron, 2001) :

« De la programmation, j’en avais fait un peu, je m’en souviens, parce que mes livres de mathématiques au secondaire, il y avait du basic à la fin. Moi, je m’amusais des fois à faire les petits programmes, juste pour voir, parce que ça m’intéressait quand même un peu… »

François, étudiant en informatique

Mais aujourd’hui, l’apprentissage de la programmation dans le cadre du cours de mathématiques semble condamné d’avance car le résultat auquel on arrive finalement au prix de tous ces efforts paraît dérisoire et sans intérêt au regard de ce qu’il est possible d’obtenir facilement avec les puissants outils logiciels qui sont maintenant disponibles. Si l’on observe encore la présence de certains programmes informatiques dans les manuels actuels, on remarque que ceux-ci sont beaucoup plus courts et font souvent appel de façon explicite à des commandes « macro » relativement puissantes, qui ne sont valides que pour l’outil utilisé.

LA TECHNOLOGIE ENCENSÉE

Ce qui paraît avoir relancé, entre la fin des années 80 et le début des années 90, le processus de légitimation des technologies dans la classe de mathématiques a été le développement des capacités graphiques : donnant à « voir » et à « manipuler » les objets mathématiques, l’outil technologique répondait à un vœu didactique, en élargissant le champ des concepts « observables » et « manipulables ». À partir de commandes simples dans une interface-usager de plus en plus conviviale, elle permettait aussi à l’élève de « passer outre des obstacles
mathématiques pour continuer à apprendre » (Artigue, 1997) et ouvrait la porte à davantage d’exploration et d’expérimentation dans l’apprentissage :

« L’utilisation de logiciels informatiques ou de calculatrices à affichage graphique fera gagner un temps précieux durant l’exploration de ces concepts et permettra ainsi d’atteindre avec davantage d’efficacité les objectifs pédagogiques visés. »

Programme d’études – Mathématiques 536, 1996

Comme cette technologie devenait en même temps un instrument incontournable du travail d’un plus grand nombre de mathématiciens et d’utilisateurs des mathématiques, sa présence en classe paraissait aussi s’inscrire dans une perspective de développement d’autonomie avec l’outil :

« Étant donné que la technologie influe sur la mathématique et son utilisation, il est nécessaire que l’élève maîtrise les outils électroniques modernes, tels la calculatrice scientifique, la calculatrice à affichage graphique, les logiciels de dessin, ainsi que les logiciels utilitaires comme le tableur, le traitement de texte, le gestionnaire de base de données, etc. »

Programme d’études – Mathématiques 536, 1996

Sur le plan de la convivialité, il convient de noter la réduction substantielle de l’écart entre le langage de communication des outils typiquement utilisés dans la classe de mathématiques et le langage mathématique lui-même. L’évolution de la calculatrice en est un exemple frappant. Avec les années, l’entrée d’expressions s’est considérablement rapprochée de l’écriture symbolique. Du temps où toutes les calculatrices n’étaient pas munies de touches de parenthèses et ne respectaient pas l’ordre de priorité des opérations, l’entrée d’une expression comme 5 sin 70 + sin 20 cos 40 pouvait se traduire par la séquence de touches suivantes :

\[
20 \sin 70 + 40 \cos 40 \times \text{MR} = \text{MC} \quad \text{M+} \quad 70 \sin \times 5 \text{M+} \text{MR}
\]

Pour éviter d’avoir à noter sur papier des résultats intermédiaires, il fallait faire preuve d’une certaine créativité dans la gestion de l’unique registre de mémoire accessible, et cela pouvait demander une traduction passablement sophistiquée de l’expression symbolique initiale. Avec les calculatrices utilisant la notation polonaise post-fixée, la transcription était plus compacte mais demandait à l’utilisateur de gérer correctement la pile des opérations en redéfinissant radicalement l’ordre d’entrée des opérations et opérandes. De nos jours, le passage à l’outil est bien plus direct ; par exemple, l’entrée de l’expression donnée plus haut pourrait se limiter sur une calculatrice graphique à une simple copie de l’expression lue de gauche à droite, et bénéficier de la confirmation visuelle renvoyée l’écran :

\[
5 \sin 70 + \sin 20 \cos 40 \text{ENTER}
\]
Le gain en convivialité représente certainement du temps gagné à la fois pour l’élève et pour l’enseignant ; il a toutefois comme effet de laisser presque entièrement à l’outil la responsabilité d’interpréter correctement la syntaxe de l’expression, déchargeant l’élève de la nécessité de la comprendre ou même d’être en mesure de faire la différence entre une multiplication et une application de fonction. Et comme les processus responsables des différents niveaux de traduction effectués par l’outil à un niveau interne sont inaccessibles à l’élève, la transparence apparente peut n’être qu’une illusion qui peut masquer des décalages importants. S’il apparaît raisonnable de ne pas complexifier inutilement la tâche de traduction, il convient cependant de ne pas se laisser aveugler, dans le choix et l’utilisation des nouveaux outils, par une transparence artificielle qui comporte le risque d’éloigner autant de la compréhension de l’expression mathématique que de celle des processus informatiques appelés à la traiter.

De nos jours, la principale utilisation qui est faite en classe des capacités graphiques de la calculatrice (ou de ses équivalents logiciels) concerne l’appréhension du rôle des paramètres lors de l’étude des fonctions. On cherche ici à mettre l’élève dans une démarche d’exploration ; à partir de l’observation de quelques cas générés par l’outil, l’élève est appelé à dégager une régularité en faisant appel à une forme de raisonnement inductif, qu’on a raison de revaloriser après une longue domination du déductif dans l’enseignement des mathématiques. Mais la facilité avec laquelle il est possible de multiplier les expériences fait s’évanouir chez l’élève le besoin de prouver la généralité des propriétés observées au profit de l’examen exclusif d’un ensemble possiblement vaste de cas particuliers. Dans certains manuels, on se satisfait d’ailleurs de l’examen de quelques cas pour établir le rôle des différents paramètres des fonctions. Comme le montre l’exemple suivant, tiré de Réflexions mathématiques 436 (1996, p.280), on demande à l’élève de conclure sur le rôle d’un paramètre à partir de l’observation de quatre cas :
Analysons différentes règles de fonctions de la forme \(f(x) = x^2 + bx \).

a) La valeur du paramètre \(b \) dans la règle d’une fonction quadratique influence-t-elle :
- 1) son ouverture ?
- 2) sa position ?

b) Quel est le point commun à toutes ces fonctions ?

c) Détermine les coordonnées du sommet de chacune de ces fonctions.

d) Quel est le rôle du paramètre \(b \) ?

Et lorsque la forme canonique est abordée un peu plus loin dans ce manuel, on ne cherche ni à valider ni à raffiner la conjecture établie précédemment (« la parabole associée à cette fonction transformée est l’image de la parabole initiale par une translation oblique »), car on semble lui avoir déjà accordé une valeur de vérité. Ainsi, l’utilisation de la calculatrice (ou d’un logiciel de géométrie dynamique) pour induire une conjecture qui s’impose avec une telle force qu’elle semble déjà vraie contribue à identifier l’outil comme le détenteur de la vérité. Son efficacité, sa rapidité de calcul, sa capacité à passer rapidement d’une représentation à une autre paraissent justifier une acceptation inconditionnelle des résultats. Pourtant, dans une perspective de développement de l’autonomie, ce devrait être l’individu qui, par ses connaissances et son analyse, contrôle les productions de l’outil et non l’inverse.

LA TECHNOLOGIE INTÉGRÉE

Cette préoccupation du contrôle de l’outil par l’élève semble plus présente dans le nouveau programme de mathématiques au niveau secondaire (MÉQ, 2003):

« La technologie, qui influe sur la mathématique et sur son utilisation, ne saurait se substituer aux activités intellectuelles. Elle demeure cependant d’une grande utilité. Elle permet notamment à l’élève de faire des apprentissages en mathématique, d’explorer des situations plus complexes, de manipuler un grand nombre de données, d’utiliser une diversité de modes de représentation, de simuler et de faciliter des calculs fastidieux. Il peut ainsi se consacrer à des activités significantes, développer ses aptitudes en calcul mental et approfondir le sens des concepts et des processus mathématiques. »
La technologie est ainsi présentée comme un exécutant déchargeant l’élève des opérations fastidieuses pour lui permettre d’approfondir ses connaissances. Mais il n’est pas sûr que des habiletés en calcul mental et une meilleure compréhension des concepts et processus mathématiques traditionnellement enseignés soient suffisantes pour permettre à l’élève d’exercer un réel contrôle, surtout s’il tente de résoudre les problèmes plus complexes qui sont désormais à sa portée. L’exercice d’un tel contrôle, nécessaire au maintien d’une autonomie de l’élève, demande de mieux comprendre les apports et les limites d’une intégration des technologies en mathématiques; et pour cela, il convient d’aborder de front les rapports liant les mathématiques à l’informatique.

À cet égard, il serait d’abord utile de viser une certaine compréhension des mécanismes internes des outils informatiques et de leurs limites intrinsèques qui leur viennent de la nécessaire et incontournable matérialisation de l’information (Bertrandias, 1992). Ensemble, ces mécanismes et ces limites conditionnent la transposition informatique (Balacheff, 1994) qui s’applique aux objets mathématiques représentés. Par exemple, lorsque l’élève utilise une calculatrice graphique, il n’a pas nécessairement conscience des mécanismes responsables de produire le tracé. Comme cela a pu être vérifié par de futurs enseignants en stage, la plupart des élèves croient que l’outil « connait » le tracé de la fonction, soit parce qu’il dispose d’un vaste répertoire de fonctions avec leur représentation graphique, soit parce qu’il applique des règles de transformation (ex. « si a est négatif, alors on renverse la courbe »). Ils ne voient pas que l’outil ne fait qu’interpréter l’expression symbolique (ou son équivalent dans le langage utilisé à l’interface) comme un processus permettant d’associer une valeur de sortie à une valeur d’entrée. Ils ne savent pas non plus que le passage à une représentation graphique de la fonction fait appel à une discrétisation de la variable indépendante sur un intervalle donné, en fonction de la résolution de l’affichage, et que seuls les points ainsi générés, avec potentiellement des erreurs numériques, servent à définir le tracé de la fonction.

La connaissance de tels mécanismes favoriserait une compréhension plus juste des lacunes de certaines représentations graphiques : absence d’asymptotes, asymétrie apparente d’une courbe qui aurait dû être symétrique, etc. Il existe des situations très simples pour favoriser la compréhension de la discrétisation sous-jacente au tracé des courbes, situations que nous avons pu expérimenter auprès de futurs enseignants. En effet, sans une connaissance du concept de discrétisation, plusieurs de ces étudiants qui se déclarent quelque peu surpris de la première des
deux représentations suivantes de la fonction $y = \sin 1000 \times$, lorsque x varie de -40 à 30, croient les choses revenues à la normale lorsqu’en faisant varier x de -70 à 70, on obtient pour la même fonction la seconde représentation :

La confiance qu’ils accordent d’emblée à la technologie et leur méconnaissance des processus impliqués les amènent à ne pas s’attarder au fait que sur un plus intervalle plus vaste, ils observent un nombre inférieur d’oscillations. Mais si on leur fait remarquer ce fait surprenant, ils s’engagent alors dans une recherche d’explication. Une confrontation aux erreurs de l’outil pourrait ainsi amener à en comprendre l’origine, à mettre fin à une certaine pensée magique, et à contribuer à créer un besoin de validation théorique.

Par ailleurs, s’il est dit que les technologies permettent d’aborder des problèmes plus complexes, force est de constater qu’à l’exception de la statistique, qui constitue un ajout relativement récent dans le curriculum et peut-être donc plus facilement malléable, on n’observe pas toujours dans la formation générale en mathématiques une modification des problèmes soumis aux élèves au-delà de ce qu’il était possible de faire sans cette technologie. Par exemple, si l’on consacre une part importante du cours de mathématiques de quatrième secondaire à calculer de façon analytique les racines des fonctions quadratiques, comme on avait l’habitude de faire avant même l’existence des calculatrices, on reste silencieux sur les méthodes qui pourraient être mises a contribution pour les polynômes de degré supérieur à deux. Accorder une place aux mathématiques discrètes et aux algorithmes itératifs dans la formation générale constituerait un apport intéressant car tout en donnant un nouveau sens à l’apprentissage des suites, cela permettrait de mieux comprendre le fonctionnement et les limites des fonctions de calcul numérique disponibles avec la calculatrice graphique (les fonctions SOLVER et INTERSECT notamment), d’initier à certains concepts-clés en programmation (affectation, boucle, test, etc.) et d’ouvrir considérablement le champ des problèmes accessibles à l’élève.

Quand il utilise une discrétisation dans le temps, l’algorithme itératif permet par ailleurs d’aborder par la simulation la complexité des systèmes dynamiques qui caractérisent les problématiques contemporaines, autant en écologie, en épidémiologie qu’en économie (Hannon

CONCLUSIONS
Si par autonomie, on entend la capacité de quelqu’un à pouvoir décider, agir et évoluer de façon autonome, éclairée, critique et responsable, et si cette autonomie est l’enjeu ultime de l’éducation, alors il convient peut-être de revoir l’intégration qu’on fait des technologies dans l’apprentissage des mathématiques. Bien que plusieurs raisons justifient la présence des technologies en classe de mathématiques, on ne pourra parler d’intégration réussie, propice au développement d’une autonomie dans une pratique mathématique instrumentée, que lorsqu’on visera un outillage technique et conceptuel qui expose autant les limites de ces outils que les nouvelles possibilités de résolution qu’ils offrent et les nouveaux champs d’étude qu’ils ouvrent. Viser un tel objectif n’est certes pas sans incidence sur la formation des enseignants.

« Il ne s'agit pas de plaquer une utilisation de l'informatique sur la culture mathématique actuelle, mais de promouvoir une culture nouvelle où la mise en œuvre de logiciels performants est contrôlée par les connaissances en mathématiques et en algorithmique (programmation et structuration des données). »

Contribution de l'ARDM à la réflexion sur l'évolution du CAPES de Mathématiques, 2002

RÉFÉRENCES

Actes du colloque du GDM-2003 67

Marie-Pier Morin
Université de Sherbrooke

Quelques réflexions sur le développement de l’autonomie professionnelle en mathématiques chez les futurs maîtres du primaire

Résumé : Qu’est-ce qu’un apprenant autonome en mathématiques ? Comment définir l’autonomie professionnelle des futurs maîtres dans l’enseignement de cette matière ? Quelles conditions favorisent le développement de l’autonomie professionnelle ? Tant de questions auxquelles nous tenterons d’apporter des éléments de réponse dans cette communication. Aussi, à partir des données recueillies par le biais d’études de cas conduites auprès de futures enseignantes en fin de formation, nous observerons différents profils de futurs maîtres dans le but de déterminer si ces profils peuvent avoir un impact quant à l’autonomie démontrée dans l’enseignement des mathématiques.

Introduction
Lorsque nous avons pris connaissance du thème du colloque, « Portée et limites de la notion d’autonomie en mathématiques », nous avons décidé de le transposer à notre champ d’expertise pour découvrir qu’il y a un rapprochement à faire entre l’autonomie du futur maître dans l’enseignement des mathématiques et notre étude doctorale qui porte sur l’intégration des connaissances mathématiques et didactiques chez les futurs maîtres du primaire. La présente recherche s’inscrit donc en continuité avec cette étude qui cherchait à déterminer comment sont utilisées les connaissances mathématiques et didactiques par les futurs enseignants et enseignantes à l’intérieur d’une séquence d’enseignement dispensée au terme du Baccalauréat en enseignement au préscolaire et au primaire (BEPP) de l’Université de Sherbrooke.

1 Ces profils ont été obtenus à partir des résultats à un test de connaissances mathématiques dans lequel des critères de sélection sont répartis en deux catégories : les connaissances mathématiques et les attitudes véhiculées au regard de cette discipline. Ces différents profils seront davantage explicités dans le cadre de la méthode.

Dans le cadre de cette communication, nous définirons tout d’abord ce qu’est un apprenant autonome en mathématiques et à quoi réfère l’autonomie professionnelle dans cette matière. Par la suite, nous présenterons très brièvement la méthode et le plan d’analyse des données. Viendront enfin les résultats ainsi que la conclusion dans laquelle nous ferons le point sur les conditions à mettre en place pour soutenir le développement de l’autonomie professionnelle en mathématiques.

1. Autonomie en mathématiques

1.1 Autonomie dans l’apprentissage des mathématiques

Tel que l’a rapporté Kamii dans le cadre de la conférence d’ouverture, l’autonomie au sens piagétien réfère à

« la capacité de se gouverner soi-même aussi bien dans le domaine moral que dans le domaine intellectuel. Une personne autonome est capable de prendre en considération tous les facteurs pertinents à la prise d’une décision et ce, indépendamment des punitions ou des récompenses, de ce qui est moralement correct ou incorrect, et de ce qui est vrai ou faux » (Kamii, dans ce volume).

Or, pour reprendre un de ses exemples, devant un élève qui affirme que $4 + 4 = 7$, l’enseignant qui renforce l’hétéronomie de l’enfant dira à ce dernier que sa réponse est fausse. À l’opposé, l’enseignant qui vise l’autonomie de l’élève soutiendra ce dernier dans une réflexion critique et l’amènera plutôt à échanger avec ses pairs pour qu’il puisse prendre conscience de son erreur par lui-même. Devant cet exemple, nous pourrions affirmer qu’un apprenant autonome en mathématiques est à la fois capable de réfléchir à son processus d’apprentissage et d’identifier ses points forts et ses points faibles, de façon à déterminer où il a besoin d’aide et de quel type d’aide il a besoin.

1.2 Autonomie dans l’enseignement des mathématiques

Si, à partir de la définition donnée par Kamii, nous voulons à présent définir ce qu’est un futur maître autonome dans l’enseignement des mathématiques, nous pourrions avancer ce qui suit : « Un futur maître autonome dans l’enseignement des mathématiques doit avant tout être un apprenant autonome dans cette matière. Comme enseignante ou enseignant, il doit de plus être en mesure de prendre en considération...
tous les facteurs pertinents à la prise d’une décision pédagogico-didactique et ce, indépendamment de l’interprétation que fait l’élève du savoir enseigné. »

Par exemple, devant l’incompréhension d’un élève, l’enseignante ou l’enseignant autonome sera capable d’amener l’enfant sur une autre piste, sur un nouveau questionnement au contraire de l’enseignante ou l’enseignant hétéronome qui restera ancré dans ce qui était initialement prévu. Nous avons ici en tête le cas d’une future enseignante qui voulait enseigner comment situer des points dans un plan cartésien. Après avoir montré à ses élèves comment placer le couple (2,4), un garçon a dit qu’il ne savait pas quoi faire avec le couple (-2,4). L’étudiante s’étant alors préparée à enseigner comment positionner le point (2,4), elle a repris la même explication, en espérant que l’enfant saisisse.

Ainsi, à cette définition qui sous-entend que le futur maître a une assez bonne maîtrise du contenu mathématique pour pouvoir comprendre le cheminement de l’élève et prendre des décisions, notre exemple nous amène à ajouter qu’une future enseignante ou un futur enseignant autonome dans l’enseignement des mathématiques est une personne capable de réfléchir à ses propres interventions de façon à s’ajuster aux événements. Cet ajout implique donc que le futur maître autonome sera apte à prendre du recul pour réfléchir tant dans l’action que sur l’action.

Dans le cadre de notre étude doctorale nous avons étudié comment les futurs maîtres en fin de formation utilisent les connaissances mathématiques et didactiques abordées au cours de leur formation universitaire, en plus d’accorder une attention toute particulière au regard critique qu’ils portent à leur pratique. Nous voulions donc examiner les deux questions de recherche suivantes :

1 — Comment sont utilisées les connaissances mathématiques et didactiques dans le cadre d’une séquence d’enseignement dispensée au terme du baccalauréat en enseignement au préscolaire et au primaire ?

2 — Les futurs maîtres ont-ils manifesté une réflexion critique face à leur pratique d’enseignement ?

Comme il est possible de le constater, ces questions de recherche font ressortir des éléments que nous jugeons nécessaires au développement de l’autonomie professionnelle de la future enseignante ou du futur enseignant en mathématiques. De
ce fait, nous pensons qu’il serait tout indiqué d’étudier les résultats obtenus dans le cadre de l’étude précitée sous l’angle de l’autonomie démontrée par les sujets dans l’enseignement des mathématiques. Par exemple, une étudiante qui performe bien au plan mathématique est-elle nécessairement autonome dans son enseignement ?
De plus, étant donné que les résultats ont été interprétés par rapport à des profils de futurs maîtres, par le biais de cette nouvelle analyse nous tenterons de voir si le profil de chacun des sujets a un impact quant à l’autonomie manifestée dans l’enseignement des mathématiques. Auparavant, de façon à mieux apprécier les résultats, dans la partie qui suit nous aborderons quelques aspects de la méthode et de l’analyse.

2. Méthode
Pour répondre à ces questions de recherche, il fallait recourir à une méthode nous permettant d’observer et d’analyser de façon approfondie la pratique de futurs maîtres. Pour ce faire, nous avons réalisé quatre études de cas auprès d’autant de futures enseignantes en fin de formation.

2.1 Population à l’étude et échantillon
La population visée par cette étude était celle des futurs enseignants et enseignantes qui ont complété leur formation académique dans le cadre du BEPP à l’Université de Sherbrooke.
L’échantillon était composé de quatre personnes qui ont été invitées à prendre part à l’étude de façon volontaire. Pour assurer une meilleure représentativité des sujets, ces personnes ont été choisies à partir des résultats obtenus à un test de connaissances mathématiques dans lequel des critères sont répartis en deux catégories, les connaissances mathématiques et les attitudes véhiculées face à cette matière, marquant les différences individuelles entre les futurs enseignants et enseignantes.
En combinant ces catégories, nous avons fait ressortir quatre profils de futurs enseignants et enseignantes inscrits au BEPP : une personne qui réussit bien en mathématiques et qui se sent prête à les enseigner aux enfants (profil 1) ; une personne qui réussit bien en mathématiques, mais qui se sent plus ou moins prête à enseigner cette matière aux enfants (profil 2) ; une personne qui réussit moins bien en mathématiques, mais qui se sent tout de même prête à les enseigner aux enfants (profil
3) et enfin, une personne qui réussit moins bien en mathématiques et qui, conséquemment, se sent plus ou moins prête à enseigner cette matière (profil 4). Dans le tableau 2.1 sont présentés les quatre profils possibles :

<table>
<thead>
<tr>
<th>Tableau 2.1 : Profils d’étudiantes et d’étudiants de la formation des maîtres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maîtrise des connaissances mathématiques (+ / -)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Attitudes face aux mathématiques (+ / -)</td>
</tr>
</tbody>
</table>

2.2 Instruments de recueil des données
Outre la passation du test de connaissances mathématiques, le recueil des données a été réalisé en trois temps. Premièrement, comme la façon la plus efficace de répondre à nos questions de recherche était d’observer nos sujets dans l’action, c’est-à-dire pendant leur enseignement, nous leur avons demandé de préparer une séquence d’enseignement de trois leçons, couvrant si possible l’étude d’un thème particulier en mathématiques. Ces leçons ont été dispensées dans la classe de stage de chacune des futures enseignantes faisant partie de notre étude et ont été captées sur bandes vidéoscopiques. Ainsi, nous ne voulons pas seulement tenir compte de ce que les sujets savent et de ce qu’ils enseignent, mais aussi, et surtout, de comment ils enseignent, comment ils concilient tout ce qu’ils ont appris. Ils ont reçu une formation didactique à l’intérieur de laquelle ils ont été initiés à des approches pédagogiques, en plus d’avoir appris à utiliser des outils d’enseignement : nous voulions donc savoir comment ils se servent de ces éléments dans leur pratique.

Deuxièmement, nous avons demandé aux sujets de rédiger un journal de bord dans lequel, pour chacune des leçons, ils devaient y consigner la préparation de la leçon, un retour sur l’intervention en classe et une réflexion sur l’action en classe. Cet instrument permettant d’obtenir des informations qui ont été consignées dans une période rapprochée de l’action, celui-ci nous a permis de suivre pas à pas la démarche de chacun des sujets et d’avoir accès à des aspects, comme des impressions personnelles, auxquels il nous aurait été difficile d’accéder autrement.
Enfin, une entrevue individuelle a été réalisée avec chacun des sujets. L’entrevue débutait par le visionnement des trois leçons avec le sujet, visionnement durant lequel le sujet était invité à arrêter l’enregistrement à n’importe quel moment pour souligner un élément revêtant, selon lui, un certain intérêt au plan didactique. Ce visionnement était suivi d’une entrevue semi-structurée élaborée à partir des observations faites sur les enregistrements vidéoscopiques et le journal de bord. En plus d’amener les sujets à préciser leur pensée, cette entrevue nous a permis de confirmer ou d’infirmer les observations obtenues au moyen des deux premiers instruments de collecte des données.

2.3 Plan d’analyse
Pour déterminer la façon dont les futures enseignantes utilisent leurs connaissances mathématiques et didactiques dans leur enseignement de même que leur niveau de réflexion critique face à leur pratique, nous avons donc utilisé des données provenant des enregistrements vidéoscopiques, du journal de bord et des entrevues individuelles. Le recours à plusieurs types de données avait pour but de vérifier si les indications de sources différentes convergent dans la même direction. Pour fin d’analyse, trois objets d’observation ont été examinés : 1. Les connaissances mathématiques ; 2. Les connaissances didactiques et 3. La réflexion dans et sur l’action. Toutefois, pour l’analyse qui nous intéresse présentement, nous n’avons considéré que les connaissances mathématiques et la réflexion dans et sur l’action.

Pour être mesure de porter un jugement d’appréciation sur la réalisation de chacun de ces objets d’observation, nous avons déterminé des critères de validité qui ne seront pas explicités dans le cadre de cette communication.

3. Résultats
Pour répondre à notre questionnement à savoir si le profil du futur maître a un impact au niveau du développement de l’autonomie professionnelle en mathématiques, nous allons dans un premier temps faire le point sur les connaissances mathématiques des sujets de même que sur leur capacité de réflexion dans et sur l’action. Dans un deuxième temps, nous nous positionnerons relativement à l’autonomie manifestée par
chacune des étudiantes dans l’enseignement des mathématiques. Le tableau 3.1 synthétise les résultats obtenus.

Tableau 3.1 : Résultats

<table>
<thead>
<tr>
<th>Objets d’observation</th>
<th>Sujet 1</th>
<th>Sujet 2</th>
<th>Sujet 3</th>
<th>Sujet 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maîtrise des connaissances mathématiques</td>
<td>+</td>
<td>+</td>
<td>+/−</td>
<td>−</td>
</tr>
<tr>
<td>Rétroaction * dans l’action</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+/−</td>
</tr>
<tr>
<td>Autonome professionnellement en mathématiques ?</td>
<td>−/+</td>
<td>+</td>
<td>−</td>
<td>+/−</td>
</tr>
</tbody>
</table>

3.1 Performance quant aux connaissances mathématiques

Les quatre études de cas nous ont permis de confirmer ce qui nous semble être un évidence, à savoir que le niveau mathématique des sujets transparaît dans leur enseignement. En conséquence, les deux futures enseignantes qui réussissent bien en mathématiques n’ont pas connu de problèmes importants au niveau de l’objet d’enseignement tandis que celles qui présentent des difficultés dans la maîtrise des connaissances mathématiques ont aussi commis des erreurs mathématiques dans l’enseignement de la ou des notions visées.

Toutefois, nous devons souligner une limite importante quant aux résultats obtenus concernant l’utilisation des connaissances mathématiques. En effet, comme chaque séquence d’enseignement ne portait que sur une seule notion mathématique, cela ne permettait nullement de généraliser nos conclusions à l’ensemble du contenu mathématique.

3.2 Réflexion dans l’action

L’analyse a démontré que les deux étudiantes ayant affirmé ne pas se sentir tout à fait prêtes à enseigner les mathématiques aux enfants sont celles qui ont le mieux réussi au
niveau de la réflexion dans l’action. Peut-être que le fait qu’elles aient moins confiance en leur capacité d’enseignante les a amenées à se remettre plus facilement en question et à prendre plus de temps pour s’ajuster aux besoins des élèves. Cette variable du temps occupe d’ailleurs une dimension très importante lorsqu’on examine de plus près ce type de réflexion. En effet, les étudiantes ayant montré une moins grande capacité de réflexion dans l’action ont souvent évoqué le manque de temps ou la volonté «d’entrer dans son horaire» pour expliquer leur lacune.

3.3 Réflexion sur l’action

Quant à la réflexion sur l’action, peu importe le profil représenté, les quatre sujets ont éprouvé des difficultés à ce niveau. Soulignons toutefois que, pour le deuxième sujet, ces difficultés se limitant presque essentiellement aux rétroactions faites par le biais du journal de bord, elles sont nettement moins importantes que pour les autres. Comme ces étudiantes n’ont pas été formées de façon formelle à l’approche réflexive durant leur baccalauréat, il faut avouer que nous nous attendions un peu à ce résultat. Deux lignes directrices se dégagent clairement de l’application de ce type de réflexion. D’une part, il y a les situations sur lesquelles, de façon assez spontanée, le sujet pose un regard critique. D’autre part, il y a les situations pour lesquelles le sujet a besoin d’un élément déclencheur, comme une question d’entrevue, pour démarrer sa réflexion. Quoiqu’il en soit, nous avons constaté que pour effectuer une réflexion, qu’elle soit guidée ou non, le sujet doit posséder les outils nécessaires. Pour réagir à une situation mathématique, cela exige une bonne maîtrise des connaissances disciplinaires à enseigner : si une étudiante a fait une erreur mathématique, mais qu’elle ne sait pas qu’il s’agit d’une erreur, on ne peut pas dire qu’elle a manqué de regard critique face à cette situation qu’elle ignore.

3.4 Autonomie dans l’enseignement des mathématiques

Si on s’attarde plus spécifiquement à l’autonomie professionnelle en mathématiques, Julie, la deuxième étudiante, est selon nous celle qui a manifesté le plus haut niveau d’autonomie dans l’enseignement des mathématiques. Effectivement, elle a tout d’abord démontré qu’elle maîtrisait bien le contenu à enseigner. Toutefois, elle nous a
confié que si elle n’a pas eu de difficulté, c’est parce qu’elle s’était préparée en conséquence. En effet, même si elle a très bien performé au test de connaissances mathématiques et, de façon plus générale, dans les cours de didactique des mathématiques suivis à l’université, cette future enseignante avoue spontanément qu’elle ne maîtrise pas toutes les notions mathématiques qu’elle aura à enseigner puisque sa compréhension repose souvent sur des trucs et des procédures bien ancrés qu’elle a appris à l’école primaire et secondaire. Elle éprouve ainsi certaines difficultés à se détacher des procédures plus avancées pour les expliquer aux enfants.

Pour pallier ses difficultés, cette future enseignante consulte fréquemment des enseignantes et des enseignants expérimentés pour s’assurer de bien comprendre une notion avant de l’aborder avec les élèves. C’est entre autres cette démarche qui nous permet de dire qu’elle est autonome. En effet, conformément à ce que nous avons défini, l’autonomie est premièrement d’être capable de reconnaître ses faiblesses et d’aller chercher l’aide nécessaire pour y remédier.

Quant à la réflexion critique développée par Julie, dans l’action, elle a su démontrer qu’elle n’éprouve aucune difficulté à déroger de ce qui était initialement prévu pour s’ajuster à la compréhension des élèves. Nous pouvons même affirmer que cette étudiante est celle qui possède le sens de réflexion dans l’action le plus aiguisé parmi nos quatre sujets. Julie démontre également une bonne capacité de réflexion sur l’action. En effet, lorsqu’elle s’est vue enseigner, elle a su relever de façon pertinente non seulement les erreurs et les difficultés auxquelles elle a été confrontée durant son enseignement, mais aussi ses belles réussites.

À l’opposé, celle qui a démontré le moins d’autonomie est Isabelle, le troisième sujet. Premièrement, bien qu’elle n’ait pas commis autant d’erreurs mathématiques que le laissait présager le test de connaissances mathématiques, il en est autrement au niveau de la transposition qu’elle a faite de ses connaissances mathématiques en situation d’enseignement. En effet, Isabelle a présenté des difficultés importantes qui se sont traduites entre autres par le choix d’exemples inadéquats.

À propos du niveau de réflexion critique manifesté par Isabelle, l’analyse des leçons a illustré de façon indéniable que cette étudiante n’a pas une grande capacité de réflexion dans l’action. En effet, différentes situations ont su mettre en valeur le fait que cette
future enseignante se voit incapable de déroger de la préparation de ses leçons pour s’adapter à la compréhension des élèves. D’un autre côté, Isabelle présente tout autant de difficulté à faire des rétrospections sur son enseignement. En effet, que ce soit dans le cadre des réflexions formulées dans le journal de bord ou encore lors du visionnement des leçons, rares sont les fois où elle s’est aperçue de ses difficultés. À l’entrevue, nous avons même dû reprendre une multitude de situations afin de comprendre son raisonnement et malgré ce questionnement, Isabelle n’a pas manifesté beaucoup plus de réflexion sur son enseignement.

En ce qui concerne les sujets 1 et 4, nous considérons qu’ils se situent entre les deux autres. Toutefois, nous ne pensons pas qu’ils aient atteint le même niveau d’autonomie. La qualité de la réflexion dans l’action démontrée par les sujets fait toute la différence. En effet, tout comme le sujet 2, celle qui ne se sent pas prête à enseigner (sujet 4) se remet plus facilement en question, ce qui lui permet de pallier son manque au niveau mathématique et d’atteindre un plus haut niveau d’autonomie. Pour ce qui est du sujet 1, elle présente plus de difficulté à effectuer des réflexions dans l’action et à adapter son enseignement à la compréhension des élèves, ce qui fait qu’elle offre un enseignement plus rigide et manifeste une moins grande autonomie. Ainsi, pour marquer cet écart, nous avons qualifié le niveau d’autonomie de la première étudiante de $-$ et celui de la quatrième de $+/$.

Si nous voulons faire le parallèle entre les profils représentés et le niveau d’autonomie professionnelle en mathématiques, nous pensons que le profil du futur maître joue réellement un rôle. Toutefois, l’étude des situations d’enseignement a montré que ce rôle se situe bien plus au niveau des attitudes qu’au niveau de la maîtrise des connaissances mathématiques, comme nous l’avions d’abord envisagé. Les deux étudiantes qui ne se sentent pas prêtes à enseigner les mathématiques aux enfants se questionnent davantage que les deux autres, ce qui fait qu’elles ont atteint une plus grande autonomie dans leur enseignement.

4. CONCLUSION
Devant ces résultats, nous nous interrogeons maintenant à savoir comment peut-on aider les futurs maîtres à développer davantage leur autonomie professionnelle en
mathématiques et ce, tout au long de leur formation, de sorte qu’au terme du baccalauréat ils se sentent mieux outillés à ce niveau.
À la lumière de nos travaux sur la formation des maîtres, nous pensons que le premier pas dans cette direction serait incontestablement d’amener les étudiantes et étudiants vers une plus grande autonomie comme apprenant, laquelle implique une bonne maîtrise du contenu mathématique à enseigner aux élèves. La maîtrise inadéquate des connaissances mathématiques chez les futurs maîtres du primaire ayant maintes fois été soulevée, nous touchons ici une problématique importante qui mérite d’être approfondie (Arsenault et Voyer, à paraître; Baturo et Nason, 1996; Cornell, 1999; Morin, 2003; Morris, 2001; Sanders et Morris, 2000; Stacey, Helme, Steinle, Baturo, Irwin et Bana, 2001).
Parallèlement, il faudrait évidemment amener les futurs maîtres à développer une plus grande capacité de réflexion face à leurs apprentissages et leur pratique. Tel que nous avons pu le faire ressortir dans le cadre de cette communication, cette compétence réflexive leur permettrait, d’une part, d’évaluer leurs forces et leurs faiblesses et, d’autre part, d’être plus en mesure de se remettre en question devant les multiples situations qui se présentent à eux.

RÉFÉRENCES

Sanders, S.E. et Morris, H. (2000). Exposing student teachers’ content knowledge :
empowerment or debilitation? *Educational studies*, 26(4), 397-408.

Mélanie Odierna
Université de Montréal

Lever une indétermination :
Un pas vers le développement d’une autonomie en mathématiques?

Résumé : Les formes indéterminées représentent une notion qui requiert la
compréhension de plusieurs concepts mathématiques fondamentaux tels que
l’infini, la division par zéro, la fonction, la continuité et la limite d’une
fonction. Elles font ressortir les conceptions erronées des étudiants sur ces
concepts et pourraient donc constituer un levier important pour développer
l’analyse et ainsi favoriser une plus grande autonomie en mathématiques.
Dans cette étude, nous nous intéressons aux dispositifs d’enseignement mis à
contribution pour l’apprentissage des formes indéterminées et à leur impact
sur les conceptions de deux groupes d’étudiants. Des résultats préliminaires
sont présentés.

Le passage au niveau collégial
La situation dans les établissements de niveau collégial est relativement inquiétante.
Seulement 39% des étudiants réussissent à compléter leurs études en deux ans; 17% en
trois ou quatre ans et 22% en mettant plus de quatre ans (Ministère de l’éducation,
1999). Les programmes en sciences connaissent un taux d’échec ou d’abandon
particulièremen élevé. De ceux qui choisissent un programme scientifique au cégep,
50. p.100 finissent par échouer ou abandonner.1 Parmi les disciplines de ce programme,
les mathématiques ne sont peut-être pas étrangères à ce phénomène. Plusieurs études,
entre autres Maurice (2000), signalent des taux d’échec et d’abandon dans les cours de
mathématiques au niveau collégial. En 1997, dans l’ensemble des établissements
publics de niveau collégial, le taux de réussite du premier trimestre dans le programme
de sciences de la nature se situait à 78% (Ministère de l’éducation, 1999). Parmi les
disciplines offertes, le premier cours de calcul (103 ou NYA) détenait un des taux

1 Extrait de l’allocution du ministre d’État à l’Éducation et à la Jeunesse, monsieur François Legault,
prononcée à l’occasion de la conférence grand public du Congrès mathématique de l’an 2000 et
d’échec et d’abandon les plus élevés. Au collège Montmorency, par exemple, de 1993 à 1997, les taux de réussite se situaient entre 40% et 59%.

L’analyse mathématique

Dans ce cours de calcul différentiel, les étudiants sont souvent amenés à faire, pour la première fois, un travail *d’analyse mathématique*. Ce passage à l’analyse serait une ouverture à une pensée mathématique avancée, en ce sens où les concepts ne se fonderaient plus sur les idées intuitives basées sur l’expérience mais plutôt sur les définitions des concepts mathématiques (Gray, Pinto, Pitta et Tall, 1999). Cette transition des mathématiques élémentaires aux mathématiques avancées est, de plus, influencée par trois modifications dans l’enseignement des mathématiques: l’utilisation croissante de l’*abstraction*, l’éloignement de la « *formule* » et l’introduction de la *démonstration* dans toute sa complexité. En effet, l’apprentissage de concepts qui sont difficilement tangibles tels que la limite, l’infiniment petit, l’infiniment grand, etc. vient compliquer l’apprentissage des mathématiques. Pour arriver à saisir ces concepts, les étudiants doivent arriver à développer une pensée mathématique qui fasse davantage appel à l’imagination. Il ne suffit plus d’appliquer une « *formule* » pour résoudre le problème et ainsi prétendre comprendre le concept en question. Plus que jamais, l’étudiant doit être capable de saisir un concept selon ses différents registres de représentations afin d’en maîtriser le sens. Par ailleurs, l’utilisation de définitions formelles et d’axiomes fait appel à une pensée déductive. L’habileté à comprendre et à rédiger des démonstrations formelles devient donc aussi un enjeu de l’apprentissage à ce niveau. Tous ces enjeux sont étroitement liés au développement d’une plus grande autonomie en mathématiques chez les étudiants.

Les formes indéterminées

Actuellement, les programmes suggèrent une approche expérimentale dans l’enseignement des mathématiques. Étant donné que les étudiants ne sont pas prêts à faire des démonstrations, c’est l’expérimental qui les amène vers la théorie. C’est présentement le cas avec l’enseignement des formes indéterminées où une place importante est accordée à l’exploration graphique de limites et à leur calcul, laissant de côté la théorie sur cette notion. Pourtant cette théorie est essentielle à l’apprentissage
des formes indéterminées. Celui-ci s’appuie sur la compréhension de plusieurs autres notions mathématiques associées à des obstacles épistémologiques connus telles que la notion de limite, la notion d’infini, de fonction et de continuité et sur la division par zéro. En faisant appel à l’analyse (théorème de Rolle, de Lagrange et de Cauchy), le travail sur les formes indéterminées pourrait permettre de dépasser ces obstacles.

Apport limite de la technologie

D’autres contraintes pèsent sur l’utilisateur. Ce sont les contraintes internes, elles représentent les limitations du logiciel, de la mémoire. Ce sont ces contraintes qui influencent particulièrement l’apprentissage des formes indéterminées. En effet, peu importe l’outil technologique utilisé, il est particulièrement difficile de représenter avec fidélité l’infiniment grand et l’infiniment petit qui interviennent dans le calcul des
limites en raison du phénomène de troncature dans la représentation des nombres en mémoire, des limites de la représentation par pixel, etc.

Ce qui nous amène à notre question : Est-ce que l’enseignement des formes indéterminées favorise le passage à l’analyse ? Avant de répondre à cette question, nous allons identifier les principales conceptions reliées aux notions d’infini, de division par zéro, de fonction et de continuité et de formes indéterminées.

Principales conceptions des étudiants sur l’infini

Principales conceptions des étudiants sur la division par zéro

Principales conceptions des étudiants sur la fonction

Les études de Vinner et Dreyfus (1989, voir : Maurice, 2000) et Tall (1992) font ressortir quelques conceptions de la notion de fonction : une relation de correspondance entre \(x \) et \(y \) (où l’on restreint, mais pas toujours, chaque \(x \) à correspondre à un seul \(y \)), et une relation de dépendance entre deux variables. Également, Ervynck (1981) mentionne que le concept image de fonction peut être situé à deux niveaux : l’étudiant identifie tantôt une fonction à une courbe ou à un graphe, tantôt à une formule.

2 « L’infini potentiel évoque une possibilité de dépassement » tandis que « l’infini actuel est une prise de conscience de tous les éléments à la fois d’un ensemble infini ». Bouvier et George (1979, voir : Maurice 2000)
Parallèlement, Barnes (1988, voir : Tall, 1992) montre que les étudiants changent leur conception d’une fonction selon la représentation. En effet, lors de l’étude d’une fonction constante, \(y = 4 \), les étudiants affirment que cette fonction est continue lorsqu’elle est représentée sous une forme algébrique, mais qu’une droite horizontale ne peut désigner une fonction.

Principales conceptions des étudiants sur la fonction

Les études de Hitt et Lara-Chavez (1999), Tall et Vinner (1981, voir Maurice, 2000) et Hitt et Planchart (1998) font valoir les différentes raisons, selon les étudiants, pour qu’une fonction soit continue ou discontinue. Tout d’abord, les principales raisons pour lesquelles une fonction est continue sont les suivantes : la fonction est continue parce qu’elle est donnée par une seule formule, le graphe n’a pas de trou ou de manque et le graphe est donné en un seul morceau. Les principales raisons pour lesquelles la fonction est discontinue : le graphe n’est pas donné en un seul morceau, la fonction n’est pas définie, la fonction est infinie, la fonction n’est pas donnée par une seule formule et la fonction a un saut.

Principales conceptions des étudiants sur la limite

Plusieurs études (Cornu, 1981 et Williams, 1991, voir : Manoma-Downs, 2001) permettent de répertorier les différents aspects des modèles de limite utilisés par les étudiants : une limite est infranchissable, c’est une borne, une limite est une borne supérieure ou une borne inférieure, la limite peut être atteinte, la limite est impossible à atteindre et une limite est associée à une idée de mouvement.

Principales conceptions des étudiants sur les formes indéterminées

L’apprentissage des formes indéterminées s’inscrit donc dans un contexte où tous ces concepts entrent en jeu. Il est raisonnable de croire que les différentes conceptions des étudiants sur ces diverses notions vont influencer leur conception sur les formes indéterminées. En effet, Maurice (2000) énumère les idées erronées chez les étudiants à propos des formes indéterminées. Étant donné le grand nombre d’idées erronées que cette étude relève, nous n’en présentons ici que quelques-unes :

- Idée 1: Les formes \(\infty-\infty, \infty/\infty, 0/\infty \) sont des formes indéterminées car ces formes donnent l’infini ou contiennent l’infini
- Idée 2: La forme 0/0 est indéterminée car 0/0 n’existe pas ou est impossible.
- Idée 3: La forme b/0 est indéterminée car la fonction, évaluée au point pour laquelle elle n’est pas définie, n’existe pas.
- Idée 4: Une forme indéterminée correspond à une situation où la limite n’existe pas.
- ...

Toutes ces idées font référence aux conceptions des étudiants sur les notions telles que l’infini, la division par zéro, la fonction et la continuité et la limite. En effet, l’idée 1 fait référence à la notion d’infini alors l’idée 2 au concept de division par zéro. L’idée 3 est caractérisée par les conceptions des étudiants sur les notions de fonction et de continuité et l’idée 4 sur la notion de limite.

Les sujets de l’étude

Notre choix de sujets s’est arrêté sur la population de sciences où généralement les étudiants ont plus de facilité en mathématiques et où les cours offrent une formation un peu plus formelle pour répondre aux exigences des programmes scientifiques universitaires. L’apprentissage des formes indéterminées figure dans les objectifs du deuxième cours de calcul. Ce cours est offert selon deux perspectives différentes : celle de sciences humaines (203) et celle de sciences (NYB). C’est donc le cours de NYB qui a retenu notre attention.

Le choix de population étant fait, nous avons rencontré quelques professeurs de différentes institutions collégiales de la grande région de Montréal pour essayer d’identifier leur stratégie d’enseignement de ce cours. Cette démarche, un peu informelle, a permis de choisir deux groupes d’observation où les stratégies d’enseignement étaient différentes. Soulignons qu’il ne s’agissait pas tant d’identifier les différences entre ces stratégies, mais plutôt de caractériser le contexte dans lequel s’inscrit généralement l’apprentissage des formes indéterminées.

des Programmes pré-universitaires de Sciences3, ils ont tous suivi le cours de calcul différentiel (NYA) et possèdent ainsi un bagage mathématique comparable. Puisque les notions de limite, de fonction, de continuité et d’infini sont des contenus obligatoires au cours de NYA4, nous avons supposé que les étudiants avaient acquis certaines connaissances et habiletés de raisonnement sur ces concepts.

Analyse des conceptions et des dispositifs d’enseignement

Analyse des conceptions

Pour chacun de ces groupes, nous avons fait une analyse des conceptions des étudiants. Tout d’abord, le questionnaire avant l’enseignement des formes indéterminées visait à recueillir les conceptions des étudiants avant l’apprentissage des formes indéterminées. Une question théorique y figurait pour chacune des notions suivantes: limite, indétermination, division par zéro et infini. Pour le seconde questionnaire, nous cherchions à identifier les conceptions qui sont toujours présentes à la suite de l’enseignement et évaluer la compréhension des étudiants sur les formes indéterminées. Pour ce questionnaire, les étudiants étaient amenés à résoudre des problèmes mathématiques reliés aux notions présentes dans le premier questionnaire et aux formes indéterminées. Pour poursuivre l’évaluation de la compréhension des étudiants sur les formes indéterminées, nous avons choisi d’analyser les productions des étudiants à un examen régulier du cours. Étant donné que celui-ci s’inscrivait dans le processus d’évaluation en classe, nous pouvions supposer que les étudiants avaient procédé à une certaine préparation pour l’examen et que leurs réponses refléteraient les apprentissages réels effectués relativement aux formes indéterminées.

Analyse des dispositifs d’enseignement

Un système d’enseignement doit être compatible avec son environnement. Cette réalité conditionne le travail externe et interne de la transposition didactique. Pour mieux apprécier comment l’environnement influence l’enseignement des formes indéterminées, nous avons commencé par analyser le programme et les manuels qui se trouvent dans la transposition didactique externe et qui influencent le travail interne.

3 Programmes de Sciences : programmes de sciences de la nature, sciences de la santé et sciences pures.
Le programme
Nous voulions situer la place des formes indéterminées et le contexte dans lequel elles se situent. Nous avons donc cherché à identifier dans la compétence associée dans les programmes aux formes indéterminées, les éléments de compétence visés.

Les manuels
Pour étudier la concordance entre les manuels et le programme du cours, nous avons effectué une analyse des manuels utilisés en classe. Une étude sur l’organisation des savoirs mathématiques dans chacun des manuels permet d’identifier les notions connexes aux formes indéterminées.

L’enseignement en classe

L’examen
Nous cherchions à identifier si les questions reflétaient les objectifs visés et l’enseignement des formes indéterminées, tel qu’il avait été dispensé. Nous avons analysé la formulation des questions, les contenus évalués et la démarche nécessaire pour la résolution du problème.
Résultats préliminaires

Suite à l’analyse du premier questionnaire dans les deux groupes, nous avons identifié les conceptions qui ressortent le plus souvent pour les notions de limite, de division par zéro et d’infini. Pour la notion de limite, le principal modèle est celui concernant la possibilité d’atteindre ou non la limite. Pour la division par zéro, c’est l’impossibilité qui revient le plus souvent et l’infini est surtout vu comme un objet : un très grand nombre.

Afin d’établir un lien entre ces conceptions qui entrent en jeu lors de l’apprentissage des formes indéterminées et les moyens d’enseignement actuels, une analyse de la transposition didactique était nécessaire.

Tout d’abord, l’analyse du programme associé au cours NYB permet tout d’abord d’identifier avec précision la « compétence » visée : « Appliquer les méthodes du calcul intégral à l’étude de fonctions et à la résolution de problèmes ». On constate que cette compétence fait surtout référence à des applications du calcul intégral. En effet, la place accordée à l’analyse ou à la preuve est très limitée. Le programme demande principalement de « calculer des volumes, des aires et des longueurs et construire des représentations graphiques dans le plan et dans l’espace », « calculer l’intégrale définie et l’intégrale impropre d’une fonction sur un intervalle »… Néanmoins, on retrouve un élément d’analyse avec les séries où l’on demande d’« analyser la convergence des séries ». Mais il se pourrait que « l’analyse » se limite à l’application de quelques tests.

L’analyse des manuels a permis de constater qu’ils sont conformes aux objectifs du cours. Dans l’analyse qui suit, nous nous intéressons uniquement à la section du manuel où se situe l’enseignement des formes indéterminées. Dans le premier manuel, les formes indéterminées sont introduites dans le chapitre des intégrales imprpores. La règle de L’Hospital est énoncée et des exemples illustrant chacun des types de formes indéterminées y figurent. Dans l’autre manuel, les auteurs débutent la chapitre sur les formes indéterminées en énonçant et en démontrant les différents théorèmes d’analyse.

6 Ibid., p. 73
7 Ibid., p. 73
tels que les théorèmes de Rolle, de Lagrange et de Cauchy. Ensuite, la règle de L’Hospital est énoncée ainsi que sa démonstration. Soulignons que celle-ci se base sur les différents théorèmes présentés antérieurement. Les formes indéterminées sont par la suite enseignées à l’aide de différents exemples.
Comme ajout par rapport au manuel, le professeur du premier groupe utilise l’aire d’un rectangle dont la base devient infiniment grande alors que la hauteur devient infiniment petite pour introduire les formes indéterminées et la règle de L’Hospital. Le professeur du second groupe définit sa stratégie d’enseignement de la manière suivante : faire la distinction entre image et limite, évaluer une limite avec le tableau des valeurs et graphiquement et utiliser une approche algébrique pour le concept de limite. Notons que pour ces deux professeurs, la finalité de l’enseignement des formes indéterminées est liée essentiellement au développement des capacités d’analyse et d’abstraction des étudiants.
Les observations ont permis de constater que les stratégies d’enseignement sont repérables dans l’enseignement des formes indéterminées. On remarque qu’un certain travail conceptuel est fait sur l’infiniment petit et l’infiniment grand dans le premier groupe et sur l’image et la limite dans le second groupe. Notons que seul le professeur du second groupe a utilisé la technologie pour l’enseignement des formes indéterminées. Dans les deux groupes, aucune place à la preuve ou aux démonstrations n’a été accordée. L’enseignement des formes indéterminées fait en classe était partiellement reflété à l’examen. Les problèmes se résumaient à l’identification adéquate des différentes formes indéterminées et à des applications de la règle de L’Hospital. Suite à cet enseignement des formes indéterminées, nous avons cherché à repérer avec le second questionnaire l’évolution des conceptions des étudiants, en les mettant en relation avec ce qui était ressorti lors du premier questionnaire. Dans les deux groupes, aucun étudiant n’a réussi à répondre adéquatement à toutes les questions. Les étudiants témoignent encore de nombreuses difficultés avec les notions de limite, de fonctions et de division par zéro. Également, ils ont des difficultés avec la compréhension des formes indéterminées. Finalement, l’analyse des productions à l’examen montre que la plupart des étudiants ont appris à manipuler les formes indéterminées.
Suite à ces résultats, on remarque que l’évaluation se limite à refléter les objectifs visés par le programme, même si les professeurs montrent une volonté évidente à développer un début d’analyse chez leurs étudiants dans leur enseignement des formes indéterminées. Ceci est probablement le résultat d’une négociation entre le système d’enseignement avec l’environnement social dans la recherche d’une forme de compatibilité : puisque les preuves et l’analyse s’instaurent en général en obstacles et haussent le taux d’échec, on est conduit à réduire l’autonomie visée en mathématiques pour obtenir de meilleurs taux de réussite.

Références

Mamona-Downs, J. (2001) « Letting the Intuitive Bear of the Formal; A Didactical

Mireille Saboya, Nadine Bednarz
Université du Québec à Montréal.

Élaboration d’une intervention en mathématiques auprès d’une élève en difficultés d’apprentissage : développement d’une autonomie à l’égard des graphiques.

Résumé : Les élèves en difficultés d’apprentissage vivent dans le quotidien des échecs répétés, un manque de confiance en eux qui expliquent leur crainte en mathématiques. L’un des enjeux de l’intervention auprès de ces élèves est de développer une autonomie en mathématiques : une construction de sens, un sentiment de contrôle et donc une confiance en eux. Des recherches ont montré que l’interprétation et la modélisation des graphiques sont source de difficultés chez les élèves. Nous avons donc développé une intervention auprès d’une élève en difficultés d’apprentissage à travers laquelle nous avons ressorti ses capacités, ses difficultés, les situations favorisant chez elle une construction de sens et un rapport différent au savoir mathématique.

PROBLÉMATIQUE
Le constat a été fait que, pour un même programme, pour les mêmes intentions, l’apprentissage lui est loin d’être uniforme chez les élèves. C’est pour cette raison que, dans certains milieux, pour un même niveau scolaire, des classes comprenant des élèves de différents « niveaux » académiques (appui, défi et régulier) ont été créées pour répondre de la meilleure façon possible aux besoins de chacun de ces clientèles. Cependant, nos observations révélées en milieu scolaire (dans le cadre de stages d’enseignement) nous ont permis de constater que le reflet de la réalité est bien différent, en ce qui concerne notamment les groupes d’appui : on enseigne souvent la même chose sur plus d’heures, de quoi démobiliser davantage encore les élèves, classés en difficulté. Il ne semble donc y avoir aucune différentiation des approches cherchant à prendre en compte réellement les difficultés des élèves.

Ce constat est le point de départ d’un travail de recherche visant à cerner les situations et les approches susceptibles d’aider ces élèves en difficultés. Plus spécifiquement, dans cette recherche, nous nous sommes intéressés à développer une intervention en mathématiques auprès d’une élève faible et à en analyser l’apport possible. Celle-ci contribuera à éclairer un enseignement davantage adapté favorisant une autonomie en
mathématiques : une construction de sens, un sentiment de contrôle et donc une confiance en eux-mêmes.

Caractéristiques des élèves en difficultés d’apprentissage
Des recherches en didactique des mathématiques nous ont éclairés sur le fonctionnement, les difficultés des élèves de classes « faibles » et leur rapport au savoir (Perrin-Glorian, 1993; Giroux et René de Cotret, 2001). Un aspect à considérer dans le travail avec les élèves faibles est celui du « rapport des mathématiques avec la réalité, du raisonnement mathématique avec la logique du quotidien » (Perrin-Glorian, 1993, p.41) En effet, quand on résout un problème de la vie quotidienne, on utilise des outils mathématiques qui permettent de traiter une situation réelle qui a été modélisée. C’est le passage vers cette modélisation qui bloque les élèves, ils doivent alors gérer le rapport avec le réel à travers la modélisation, ils doivent trier dans la réalité ce qui est pris ou pas en compte dans le modèle; celui-ci ne décrit pas complètement la réalité mais il doit permettre de la prévoir de façon satisfaisante. Cette idée n’est pas facilement intégrable pour les élèves qui ne voient pas que la logique mathématique et celle du quotidien ne coïncident pas toujours. Cette représentation qu’ils se font des mathématiques, dont ils distinguent mal la logique spécifique, va s’insérer par ailleurs dans un certain rapport négatif au savoir (Charlot, Bautier et Rochez, 1992). Ces élèves vivent en effet dans le quotidien, et ce depuis très longtemps, des difficultés importantes en mathématiques, des échecs répétés, expliquant leur crainte des mathématique et leur manque de confiance en leurs capacités en ce domaine.

Enfin, ces élèves ont des projets très raisonnables et modestes pour l’avenir. Ils ne retrouvent donc pas dans l’école ce qu’ils cherchent pour les préparer à un métier, leur projet social demande peu d’études, les savoirs scolaires leur semblent particulièrement déconnectés des savoirs pratiques qui leur paraissent quant à eux utiles (Perrin-Glorian, 1993).

Ce rapport au savoir, à l’école va contribuer, avec les difficultés rencontrées par ces élèves, à installer un type de fonctionnement en classe, en lien avec le sens qu’ils confèrent à ces savoirs. Les chercheurs ont relevé plusieurs attitudes typiques des élèves en difficulté d’apprentissage. Ainsi, ces derniers s’investissent peu dans les tests, ils
n’abordent pas une partie des questions, phénomène qui se reproduit dans le travail à faire à la maison. De plus, ils se lassent vite d’une situation, il est donc difficile de mener à terme son exploitation en classe et d’en tirer des bénéfices (Perrin-Glorian, 1993; Giroux et René de Cotret, 2001). La gestion et la discipline dans ces classes s’avère importante, le temps effectif de travail des élèves en classe est alors écourté. En effet, le travail en groupe et les phases collectives sont difficiles à gérer car certains élèves sont incapables de communiquer, ils ont du mal à s’exprimer, quelques-uns d’entre eux n’en ont pas envie, certains sont incapables de respecter des règles élémentaires de prise de parole. Ils n’aiment pas recevoir un enseignement de l’un de leurs pairs, ils se sentent jugés. Ils essaient constamment de deviner ce que veut le maître, ses attentes (Perrin-Glorian, 1993).

Cette attitude est à lier à un manque de confiance en eux-mêmes. L’élève en difficulté n’est pas très sûr de lui, il emploie fréquemment des phrases comme « je vais essayer ça », « j’ai dit ça au hasard » (Perrin-Glorian, 1993, p. 44). Cet élève est très irrégulier dans ses performances, il peut réussir un exercice qu’il ne réussit plus en fin de séance ou quelques jours plus tard. La situation d’échec dans laquelle se retrouvent les élèves en difficultés d’apprentissage contribue à leur donner d’eux-mêmes une image dévalorisante.

Dans leur article, Blouin et Lemoyne (2002) soulèvent le fait que ces élèves n’osent émettre une réponse de peur de se tromper, ils n’acceptent de répondre généralement qu’aux questions dont ils sont certains de connaître la réponse. Ils ont donc une propension à se réfugier dans les calculs, leur rapport au savoir est alors centré sur le maître. Ils se placent dans un rapport d’application au savoir, non critique, perdant toute autonomie.

MÉTHODOLOGIE
Caractéristiques de Jacinthe

Nous avons suivi Jacinthe, une élève faible classée en difficulté d’apprentissage pendant son année de seconde 2. Cette élève ne pouvant suivre le cheminement normal en classe car elle suit des dialyse trois fois par semaine à l’hôpital, l’enseignement a donc eu lieu à l’hôpital. L’intervention a pris place toute l’année et a
touché à toutes les notions de secondaire 2. Plus spécifiquement, pour les graphiques, partie qui a été retenue pour notre recherche, cette intervention s’est déroulée sur une semaine.

Les bulletins scolaires au primaire de Jacinthe nous ont permis de cerner les caractéristiques de Jacinthe au début de l’intervention. Jacinthe n’a jamais redoublé. C’est sur la base des résultats que nous avons souligné en gras dans le tableau ci-dessous que cette élève a été classée en classe d’appui en secondaire 1. Nous pouvons la caractériser comme une élève faible puisque ses résultats tournent autour de 60% à la fin du primaire.

C’est durant l’année scolaire 1996-1997 qui correspond à la troisième année du primaire que nous notons une première baisse dans ses résultats. Lors d’un entretien, elle nous a confirmé que cette année, elle avait ressenti ses premières difficultés en mathématiques. Ces difficultés étaient en partie reliées à son enseignante. D’après Jacinthe, leur relation était très tendue, son enseignante lui donnait rarement la parole quand elle levait le doigt et elle l’interrogeait sur des choses que notre élève ignorait, un sentiment de frustration a alors commencé à germer dans son esprit. Étant privée de récréation pour refaire les exercices qu’elle n’avait pas réussis, les mathématiques ont alors été associées à une punition. Cette réaction a suscité chez Jacinthe un sentiment d’échec, de frustration, de manque de motivation et de confiance en elle. Cette troisième année du primaire a été décisive en ce qui concerne son rapport aux mathématiques.

Tableau 2.1 : Résultats scolaires au primaire de Jacinthe en mathématiques

<table>
<thead>
<tr>
<th></th>
<th>Nombres naturels</th>
<th>Géométrie mesure</th>
<th>Nombres rationnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1ère année primaire (94-95)</td>
<td>71%</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>2ème année primaire (95-96)</td>
<td>90%</td>
<td>86,5%</td>
<td></td>
</tr>
<tr>
<td>3ème année primaire (96-97)</td>
<td>68%</td>
<td>77%</td>
<td></td>
</tr>
</tbody>
</table>
D’après son parcours au primaire, notre élève a été classée en difficulté d’apprentissage au secondaire. Elle s’est alors vue admise dans une classe d’élèves « faibles », dans laquelle une approche différente des mathématiques a été conduite. Cette année là, la chercheure Nadine Bednarz avait en effet monté un projet conjointement avec l’enseignante pour intervenir auprès de ces élèves (Bednarz, Labrosse, 2001). Depuis la première année du secondaire, cette élève a donc reçu un enseignement différent du régulier, un enseignement cherchant à prendre en compte les difficultés des élèves de ces classes et qui vise à améliorer l’apprentissage des mathématiques. Cette même approche s’est poursuivie en deuxième année du secondaire.

Évolution de Jacinthe concernant le rapport à l’école, à l’apprentissage et au savoir

Pour cerner le rapport à l’école, à l’apprentissage et au savoir mathématique de l’élève, nous avons utilisé le bilan des savoirs, emprunté à l’équipe de Charlot, Bautier et Rochex (1992). Ce dernier s’est déroulé en deux temps hors de la classe de mathématiques, au début de secondaire 1 et au début de secondaire 2, il s’appuie sur la question suivante : « Depuis que tu es né, à l’école, dans la famille, avec les amis,... Qu’est-ce que tu as appris? Qu’est-ce qui est important pour toi dans ce que tu as appris? ».

Nous pouvons noter un changement important en ce qui concerne le lieu d’appropriation du savoir. En effet, au début de secondaire 1, l’élève parle uniquement de sa famille qui apparaît comme source principale d’apprentissage (on ne retrouve aucune référence à l’école) alors qu’en début de secondaire 2, il y a un élargissement des lieux d’apprentissage, la famille est encore présente mais on voit apparaître les amis et surtout l’école. Nous pouvons donc souligner que la position de l’élève a changé
pendant sa première année du secondaire dans laquelle elle a suivi une intervention particulière (Berdnarz et Labrosse, 2001), vis à vis du lieu d’appropriation des savoirs, elle considère maintenant l’école comme un élément important. Au début de secondaire 1, les apprentissages décrits sont des apprentissages de base qui sont reliés à la vie quotidienne comme « parler, marcher, se nourrir » alors que la vision de l’élève s’est élargie à la fin de l’enseignement adapté reçu en secondaire 1. En effet, notre élève décrit à ce moment quatre types d’apprentissage différents. Elle reprend les apprentissages de base dont elle parle dans le premier bilan des savoirs (« parler, marcher, les choses à faire dans la vie »). Elle décrit également des apprentissages reliés à la quotidienneté, dans le pôle du savoir-faire (« j’ai appris à jouer à la corde à danser »). On repère de plus des apprentissages qui sont reliés au contenu scolaire, plus précisément aux mathématiques (« j’ai appris que j’étais bonne en maths, bien meilleure que je ne pensais »). Ce dernier type d’apprentissage décrit apparaît lié aux dimensions affectives.

Nous pouvons donc constater la richesse des résultats obtenus et l’impact qu’a semblé avoir l’enseignement donné en secondaire 1 et sur le rapport global de l’élève à l’école, aux apprentissages, plus spécifiquement en mathématiques. Elle a développé une confiance en elle.

Nous voyons donc l’amorce d’une évolution chez Jacinthe qui est confirmée par un portfolio qu’elle avait construit, dans lequel il est possible de retracer son rapport aux mathématiques. On peut remarquer que Jacinthe fait preuve d’esprit critique face au contenu en mathématiques, elle précise qu’elle aime les fractions mais pas la géométrie.

Sa vision des mathématiques a évolué depuis le primaire, en effet, au primaire, elle perçoit les mathématiques comme une discipline dans laquelle on ne fait que des calculs. Elle n’accorde donc pas une grande pertinence à cette discipline. À la fin de secondaire 1, cette discipline est perçue comme utile car elle est vue comme un outil pour résoudre des problèmes de la vie quotidienne. La résolution de problèmes n’est plus liée à l’exécution de calculs mais plus à l’émergence d’une idée, d’une façon de procéder. Jacinthe a acquis une certaine autonomie et elle ne se décourage pas face à la résolution de problèmes. De plus, Jacinthe donne de l’importance aux supports qui permettent d’approcher les mathématiques comme la manipulation d’objets, la
visualisation, les dessins et les jeux. Sa vision face aux mathématiques s’est donc beaucoup élargie puisqu’elle a développé pendant l’intervention en secondaire 1 des outils de résolution de problèmes.

INTERVENTION SUR LES GRAPHIQUES

Dans notre recherche, nous nous sommes intéressées à l’intervention menée sur les graphiques, élément important du programme de mathématiques au secondaire, et plus précisément à l’interprétation et à la modélisation de graphiques qui sont source de difficultés chez les élèves (Janvier, 1996). Nous avons conçu trois types de situations d’enseignement : des situations d’interprétation, des situations de modélisation et des situations intermédiaires entre interprétation et modélisation que nous allons décrire.

L’interprétation est le passage du graphique au verbal

Figure 3.1 : Situation 9 : Description verbale du graphique (tirée de Carrousel mathématique 2, tome 2, p. 30)

Par un bel après-midi, Chaperon rouge est allée rendre visite à sa grand-mère. La maison de sa grand-mère est située à 5 Km de chez elle. On a représenté la randonnée de Chaperon rouge par un graphique. Où lit-on sur le graphique que la maison de grand-mère est à 5 Km de celle de Chaperon rouge ? À quelle heure Chaperon rouge est-elle partie de chez elle ? Ayant oublié son petit panier, Chaperon rouge a dû revenir chez elle. Quelle heure était-il lorsqu’elle en est repartie ? Combien de temps est-elle restée chez sa grand-mère ? On raconte qu’en revenant chez elle à la tombée du jour, Chaperon rouge fut soudain plongée dans l’obscurité. Elle a eu peur et s’est mise à courir. Quelle heure était-il lorsqu’elle a commencé à courir ? À quelle heure est-elle rentrée chez elle ?

L’autre passage sollicité est la modélisation qui requiert le passage du verbal au graphique :
Nous sommes dans un avion, on regarde la température extérieure en fonction de l’altitude. Trace le graphique correspondant à cette situation :

a) L’avion part d’une altitude de 0 Km, à l’extérieur il fait 10°C.
On constate ensuite que la température baisse uniformément quand l’avion monte en altitude :
à 10 Km, la température est de –55°C.
Puis la température devient stable, à 20 Km d’altitude on prend la température extérieure qui est encore de –55°C.
À 30 Km, elle a augmenté uniformément jusqu’à –45°C.
Finalement, la température revient à 0°C à une altitude de 45 Km. Elle est montée uniformément.

b) Quelle température fait-il à 15 Km et à 35 Km d’altitude ?
Peux-tu me dire à quelle altitude la température était de –25°C ?

Figure 3.2 : Situation 11 : Tracé d’un graphique d’après une description verbale (tirée et modifiée de Carrousel mathématique 2, tome 2, p. 25)

Nous avons également construit des situations intermédiaires entre l’interprétation et la modélisation. Ce sont des situations qui favorisent des allers-retours entre la représentation graphique et la représentation verbale. On veut favoriser une lecture simultanée dans ces deux registres de représentation pour favoriser le passage d’un registre à l’autre.

Un dessin et un graphique sont donnés à l’élève et elle doit établir un lien entre les deux. Ce type de problème force un passage vers le registre verbal dont l’importance est relevé par Janvier (1996) car la modélisation suppose une phase de reformulation. En effet, pour résoudre des problèmes, il faut d’abord découper les mots du problème.
La situation ci après est un exemple d’une situation intermédiaire entre la modélisation et l’interprétation :
Janvier (1981) a remarqué que, dans l’enseignement, l’interprétation sollicitée est limitée : on donne toujours des graphiques représentés par des droites ou des segments de droite. Les graphiques plus complexes, comme par exemple des courbes, ne sont pas très présents, ce qui renforce chez les élèves l’idée de relier les points par des segments de droite sans se pencher sur ce que cela implique lors d’une modélisation. Celui-ci fait également état du peu de situations utilisées dans l’enseignement qui demandent une analyse de plusieurs courbes se trouvant sur un même graphique, l’élève doit tenir compte à la fois des grandeurs données sur les axes et d’autre part de la position des courbes l’une par rapport à l’autre pour pouvoir les interpréter.

Dans l’élaboration de nos situations d’enseignement, nous avons pris en compte plusieurs variables didactiques. Nous avons distingué les situations dont le tracé est continu (droites, segments), des situations dont le tracé est discret; les situations dont les données sont numériques, des situations aux données non numériques (le premier type de situation amène vers une lecture point par point alors que les données qualitatives forcent vers une lecture plus globale du graphique). La nature des grandeurs sur les deux axes (si même nature comme l’âge d’un humain en ordonnée et l’âge d’un chat en abscisse ou si nature différente comme la masse et l’âge). Nous avons présenté des graphiques qui demandent la lecture simultanée de plusieurs graphiques, dans deux plans cartésiens différents ou dans un même plan cartésien. De plus, nous avons pris en compte la difficulté des élèves reliée au statut iconique du graphique qui est de considérer le phénomène réel dans le tracé et non la modélisation de ce phénomène (par
exemple dans le cas de Chaperon rouge, figure 3.1, on dirait qu’elle monte une montagne, ensuite elle s’arrête, elle redescend la montagne,…) Finalement, nous avons aussi considéré le sens critique de l’élève qui est provoqué explicitement. Par exemple, dans la situation ci-dessous, l’élève doit trouver l’erreur dans ce graphique (qui est que la personne ne peut revenir dans le temps).

Figure 3.4 : Situation 15 : étude du jugement critique (tirée et modifiée de Carrousel mathématique 2, tome 2, p.47)

Trouve où est l’erreur dans le graphique suivant :
Un élève a construit sa randonnée en ski de fond. Pourquoi peut-on être assuré qu’il s’est trompé ?

RÉSULTATS

Nos résultats montrent que la conceptualisation du graphique évolue au long de notre intervention. Les graphiques sont vus au début comme un ensemble de points, l’élève en fait une lecture point par point. Pendant l’observation, le graphique est perçu plus globalement et le statut des nombres change, ils constituent alors des points de repère au service du raisonnement qualitatif. Pour l’interprétation du graphique sur la randonnée de Chaperon rouge, l’élève en fait une lecture globale comme le montre son discours : « …la distance de la maison et le moment de la journée. Donc là plus elle avance, plus le temps augmente. (…) Plus elle avance, plus il y a de Km ».

Par contre, une difficulté qui persiste tout au long de l’intervention est liée à l’emprise du contexte. Cette conception est instable dans cette situation mais elle reste présente. Au début, l’élève dit que le tracé a l’air d’une montagne, après notre intervention (qui consiste à dire que le graphique ne représente pas le chemin de Chaperon rouge mais le temps par rapport à la distance), un conflit avec le statut iconique se produit, elle interprète correctement le graphique. Mais il refait son apparition quand elle dit que Chaperon rouge a en fait marché en forme de montagne.
En ce qui concerne la situation de modélisation, Jacinthe ne réinvestit pas les connaissances acquises dans les situations d’interprétation puisqu’elle ne relie pas les points entre eux, il n’y a pas de sens à faire ceci pour elle.
En ce qui concerne la situation intermédiaire, elle développe toute seule une stratégie, elle bloque d’abord une grandeur, elle ne tient compte que de l’âge des personnes et elle néglige à prime abord la taille. Elle classe alors les personnages du dessin suivant leur âge et rapporte ces informations sur le graphique. Les situations qui demandent du jugement critique ont été bien résolues. Nous avons noté que Jacinthe utilise son esprit critique dans plusieurs situations alors que nos intentions n’étaient pas tournées vers cela.

CONCLUSION
La dimension des élèves en difficultés que nous avons prise en compte dans ce travail nous a permis de considérer leur apprentissage différemment des élèves au régulier. Ces sont des élèves qui présentent pour la majorité un grand potentiel qui n’est pas souvent mis à contribution. Leur permettre un apprentissage différent de celui qui est fait dans les classes d’appui, permet comme nous l’avons vu avec Jacinthe et comme d’autres recherches en témoignent (Bednarz et Labrosse, 2001), de développer chez ces élèves un autre rapport au savoir, un intérêt pour l’école, une autonomie dans leur apprentissage et une confiance en eux mêmes, en leur capacité.
Jacinthe a construit un sens aux notions enseignées, elle a développé plusieurs raisonnements. Cette attitude s’est poursuivie en secondaire 3, où face à l’enseignement sur les variables dépendantes et indépendantes, elle a développé sa propre stratégie de résolution différente que celle qui est habituellement enseignée et qui fonctionne.

Références

Blouin, P.et G. Lemoyne (2002). L’enseignement des nombres rationnels à des élèves en difficulté d'apprentissage: une approche didactique de la rééducation et ses
effets. Grenoble : Petit x, no 58, pp. 7-23.

Izabella Oliveira
CIRADE, Université du Québec à Montréal

L'enseignement de la proportion simple au Brésil : stratégies avant et après l'enseignement formel

Résumé : Plusieurs travaux ont permis d’investiguer le développement du raisonnement proportionnel à l’école. Notre étude cherche à mieux comprendre les stratégies utilisées par les élèves avant et après l’enseignement de la proportion. À cette fin un questionnaire écrit a été passé auprès d'élèves de Sec.I à Sec. IV au Brésil. Nos résultats montrent qu’avant tout enseignement de la proportion les élèves ont déjà recours à un raisonnement proportionnel et utilisent à cette fin différentes stratégies de résolution. Après enseignement, ils utilisent plutôt le produit croisé et souvent d’une façon inappropriée. Le fait que les élèves réussissent à s'approprier avant tout enseignement de la proportionnalité et plus après le sens des problèmes, nous pousse à réfléchir sur les pratiques mises en place à l'école et leur effet sur l'autonomie des élèves.

INTRODUCTION
Plusieurs études (Oliveira, 2000; Vergnaud, 1991) ont montré que les enfants ont déjà une certaine compréhension du concept de proportion avant tout enseignement formel à l'école. Cependant quelques unes seulement de ces études ont identifié les stratégies utilisées par ces élèves avant cet enseignement.
Généralement à l'école, l'enseignement de la proportionnalité apparaît en secondaire II et privilégie le produit croisé comme méthode de résolution. Cette méthode conduit les élèves à prendre davantage en considération les données numériques du problème que le raisonnement sous-jacent.
Avec l'objectif d'identifier quelles sont les stratégies utilisées par des élèves avant et après enseignement formel de la proportionnalité à l'école, nous avons observé des élèves de secondaire I à secondaire IV, dans un contexte particulier, celui du Brésil.
L'idée que les contenus scolaires ne peuvent pas être travaillés avant le moment défini par le programme d'études a une forte résonance dans le milieu scolaire, ainsi que la croyance à l'effet que les élèves ne sont pas capables d'apprendre un concept avant le moment défini par les manuels et les programmes d'études. Plusieurs partagent aussi l'idée qu'ils n'ont pas non plus de connaissances autour de ce concept. Une des
conséquences de ces présupposés est que les connaissances antérieures des élèves ne sont pas toujours prises en considération, pas plus que ne le sont, les stratégies qu'ils pourraient utiliser pour résoudre les situations proposées.

L'enseignement de la proportionnalité

Selon Dupuis et Pluvinage (1981),

« l'enseignement de la proportionnalité occupe une position certainement particulière. Il s'agit d'un concept dont l'utilité générale est indéniable : non seulement il joue un rôle fondamental en mathématique, mais ses applications sont innombrables et présentes dans tous les secteurs d'activité humaine. » (p. 167)

Au Brésil, l'enseignement de la proportionnalité se donne généralement d'une façon fragmentée, chaque partie du chapitre proportion est vue comme un objet d'étude en lui-même. Cette fragmentation finit par transformer des outils de résolution des problèmes (le produit croisé, par exemple) en objets d'études. Cet enseignement qui ne prend en considération qu'une stratégie possible comme méthode de résolution, et qui ne considère pas d'autres stratégies valables, risque fort d'avoir des conséquences importantes pour les élèves.

La façon dont un élève attribue du sens à un problème, la façon dont il établit des relations entre les données et la manière par laquelle il met en œuvre les connaissances déjà acquises, nous donne des indices sur la manière dont cet élève voit la mathématique et sur la manière dont il s'approprie les outils qu'il a pour résoudre une situation donnée.

Est-ce que les élèves qui n'ont pas appris la proportionnalité à l'école sont capables de résoudre des problèmes de proportion? Est-ce que les stratégies utilisées par ces élèves changent après l'enseignement? Comment le produit croisé est-il employé par ces élèves?

Avec l'objectif de répondre à ces questions, une étude a été menée pour identifier quelles stratégies les élèves de secondaire I à secondaire IV utilisent pour résoudre des problèmes de proportion simple. Cette étude nous permettra également de voir si ces stratégies changent ou non pendant l'enseignement secondaire, et d'identifier si il y a
des différences dans les stratégies utilisées par les élèves en fonction de la structure des problèmes.

MÉTHODOLOGIE
Cette étude a été fait auprès de 494 élèves du secondaire I à secondaire IV (11-15 ans) qui appartiennent à 3 écoles au Brésil. Les élèves ont répondu individuellement à 8 problèmes (4 problèmes de proportion directe et 4 de proportion inverse, annexe 1).
Les problèmes ont été choisis à partir de manuels les plus utilisés, il s'agit donc de problèmes scolaires classiques. Les critères de choix ont été basés essentiellement sur la structure des problèmes : proportion directe ou inverse.
Les problèmes de type scolaire ont été choisis car les élèves qui ont suivi un enseignement formel connaissent la structure de ces problèmes et ceux qui n’y sont pas encore passés peuvent montrer leurs connaissances dans la résolution de problèmes scolaires en proportion. Ceci nous permettra de comparer les stratégies de résolution dans ces deux groupes d’élèves.

RÉSULTATS
Nous présenterons d'abord la description de chacune des stratégies utilisée par les élèves pour résoudre les différents problèmes. Nous présenterons ensuite l'analyse de ces stratégies en essayant de comprendre le pourquoi de leurs utilisation.

1. Procédure additive : l’élève additionne plusieurs fois la relation qui est déjà établie dans le problème, jusqu’à ce qu’il trouve la valeur demandée.

Exemple: J’ai écrit un livre de 400 pages. Dans les premiers deux jours j’ai écrit 100 pages. En gardant ce rythme, combien de jours me faudra t-il pour écrire tout le livre?
Pour écrire 100 pages j’ai besoin de 2 jours, donc j’aurai besoin de:

\[
\begin{align*}
100 &= 2 \text{ jours} \\
100 &= 2 \text{ jours} \\
100 &= 2 \text{ jours} \\
100 &= 2 \text{ jours}
\end{align*}
\]

\[
\begin{align*}
4 \text{ jours} \\
4 \text{ jours}
\end{align*}
\]

\[
8 \text{ jours}
\]
2. Retour à une grandeur intermédiaire: Les élèves résolvent le problème en passant par une grandeur intermédiaire (reconstruction d'un "tout fictif") pour ensuite utiliser cette valeur pour répondre à la question du problème.

Exemple: Une voiture parcourt une distance entre deux villes en 5 heures avec une vitesse de 90 kilomètres par heure. En combien de temps fera-t-elle le même voyage avec une vitesse moyenne de 75 kilomètres par heure?

Avec une vitesse de 90 kilomètres par heure en 5 heures, la voiture va parcourir 450 kilomètres. Elle doit faire ce parcours de 450 km, avec une nouvelle vitesse de 75 kilomètres par heure. Alors, cela lui prendra 6 heures. (450 : 75 = 6 heures)

3. Retour à l’unité: Les élèves résolvent le problème en se ramenant à une grandeur qui est l'unité, ils utilisent ensuite cette valeur pour répondre à la question du problème.

Exemple: J’ai écrit un livre de 400 pages. Dans les premiers deux jours j’ai écrit 100 pages. En gardant ce rythme, combien de jours me faudra t-il pour écrire tout le livre?

J’ai mis 2 jours pour écrire 100 pages, donc j’ai besoin de 1 jour pour écrire 50 pages (2 fois moins). Donc, pour écrire 400 pages j’ai besoin de 400 divisé par 50. J’aurai besoin de 8 jours pour écrire tout le livre.

4. Recours à un facteur de proportionnalité: Les élèves résolvent le problème par l’établissement d'un facteur de proportionnalité entre les grandeurs homogènes du problème, ou non-homogènes, et ensuite, ils utilisent le facteur trouvé pour répondre à la question du problème.

Exemple: J’ai écrit un livre de 400 pages. Dans les premiers deux jours j’ai écrit 100 pages. En gardant ce rythme, combien de jours me faudra t-il pour écrire tout le livre?

Je dois écrire 4 fois plus de pages pour écrire 400 pages, donc j’aurais besoin de 4 fois plus de temps.

100 x 4 = 400 pages

4 x 2 = 8 jours

5. Produit croisé: utilisation de la propriété le produit des extrêmes est égal au produit des moyens, c’est-à-dire, si a/b = c/x a fois x = bc, donc x = bc/a

Exemple: Avec une vitesse constante, une voiture fait un parcours de 500Km en 10 heures. Combien de kilomètres parcourra-t-elle en 30 heures?
Km	**Heures**	**10 : X = 500 ; 30**
500 | 10 | 10X = 15000
X | 30 | X = 15000

Analyse des stratégies utilisées par les élèves

Nous présenterons ici une analyse des stratégies utilisées par les élèves à partir de chaque groupe de problème de proportion (directe et inverse). Les résultats seront présentés par rapport au nombre total d'élèves qui ont correctement résolu les problèmes.

Dans l'analyse des problèmes de proportion directe, nous pouvons nous apercevoir que les élèves qui n'ont pas utilisé le produit croisé comme stratégie de résolution ont utilisé d'autres stratégies, mais quelles ont été ces stratégies?

La plupart des élèves ont utilisé la stratégie **retour à une valeur unitaire** (23,91%), ces élèves ont trouvé d'abord la valeur correspondant à 1 unité, pour utiliser ensuite cette valeur pour trouver la réponse du problème.

On a observé aussi que 15,71% des élèves ont utilisé la stratégie **recours à un facteur de proportionnalité** pour résoudre les problèmes. Ici les élèves ont établi une relation entre les grandeurs du problème (homogènes ou non-homogènes).

D'autres élèves ont utilisé une **procédure additive** pour résoudre les problèmes. Nous trouvons important ici de mentionner que cette stratégie a été utilisée de manière correcte, c'est-à-dire que les élèves ont utilisé un bon raisonnement, mais qui a été exprimé à travers un calcul d'addition ou de soustraction.

Quand on observe la résolution des problèmes de proportion inverse, nous pouvons nous apercevoir que la plupart des élèves ont utilisé la stratégie de **retour à une grandeur intermédiaire** (28,40%). Comme on en a parlé auparavant, cette stratégie consiste dans l'établissement d'un « tout fictif », elle peut être vue comme l'inverse de la stratégie **retour à une valeur unitaire**, dans le sens que l'élève ici cherche combien vaut le tout pour après utiliser cette valeur pour trouver combien vaut l'unité.

Une donnée importante pour nous c'est le fait que la stratégie retour à une valeur unitaire a été trouvée seulement dans les problèmes de proportion directe et que la stratégie **retour à une grandeur intermédiaire** a été trouvée seulement dans les problèmes de proportion inverse.

Actes du colloque du GDM-2003 109
On a observé aussi des élèves qui ont résolu les problèmes de proportion inverse à partir de la stratégie de **recours à un facteur de proportionnalité (7,40%)**, et encore d'autres élèves qui ont utilisé une **procédure additive (1,40%)**.

CONCLUSIONS

Dans ce travail nous avons observé des élèves de secondaire I à secondaire IV avec l'objectif d'identifier les stratégies qu'ils mettent en place pour résoudre des problèmes de proportion simple directe et inverse. Nous avons aussi observé si la structure du problème (directe ou inverse) a une influence sur la stratégie privilégiée par les élèves dans la résolution de ces problèmes.

En analysant la résolution des problèmes des élèves du secondaire, nous nous sommes aperçue que les élèves qui ne sont pas encore passés par l'enseignement formel de la proportionnalité à l'école, sont capables de résoudre certains problèmes, même ceux présentant des structures plus complexes, comme nous le voyons par exemple dans le problème 4 de proportion inverse en annexe.

Les élèves, avant la 2e année du secondaire, réussissent à s'approprier le sens des problèmes de proportion simple, ils mettent en place des connaissances et construisent des outils pertinents à la résolution de la situation proposée. Ces élèves utilisent un raisonnement proportionnel.

Après l'enseignement formel de la proportionnalité, la stratégie la plus utilisée pour résoudre autant les problèmes de proportion directe que les problèmes de proportion inverse a été le produit croisé. Néanmoins, l'utilisation de cette stratégie conduit à des erreurs tant par rapport à la compréhension du problème que dans l'utilisation de la méthode elle-même.

Quelles ont été les stratégies utilisées par les élèves qui n'ont pas utilisé le produit croisé en lien avec la structure des problèmes?

On a observé que pour les problèmes de proportion directe, les stratégies le plus utilisées ont été le retour à l'unité et l'établissement du facteur de proportionnalité.

Pour les problèmes de proportion inverse on a observé que la stratégie la plus utilisée a été le retour à une grandeur intermédiaire. Quelques élèves seulement ont eu recours aussi à l'établissement d'un facteur de proportionnalité.
Une question importante que cette recherche met en évidence est le fait que les élèves avant tout enseignement formel sont capables de résoudre des problèmes de proportion simple avec des stratégies qui sont valables et significatives. D'un autre côté, on observe la perte de ces stratégies après l'enseignement et l'utilisation inappropriée du produit croisé.

Ces phénomènes nous poussent à réfléchir aux pratiques mises en place à l'école et aux effets de ces pratiques. Ils nous amènent aussi à nous interroger sur l'apparente perte d'autonomie dont font preuve les élèves dans le choix de stratégies de résolution de problèmes de proportion après avoir reçu en enseignement de ce sujet à l'école.

Ils nous amène, aussi à nous interroger sur l’apparente perte d’autonomie dont font preuve les élèves dans le choix de stratégies de résolution de problèmes de proportion après avoir reçu un enseignement de ce sujet à l’école.

RÉFÉRENCES :

ANNEXE

Problèmes de proportion direct :
1- Avec une vitesse constante, une voiture fait un parcours de 500Km en 10 heures. Combien de kilomètres parcourra-t-elle en 30 heures?
2- Pour 100 kg d’un tuyau métallique 25 kg sont en cuivre. Combien de cuivre aura 360 kg de ce même tuyau?
3- Avec 80 Reais, Ligia a acheté 5m d’un tissu pour faire un rideau. Si elle veut acheter 9m de ce même tissu pour faire un autre rideau, combien d’argent dépensera-t-elle?
4- J’ai écrit un livre de 400 pages. Dans les premiers deux jours j’ai écrit 100 pages. En gardant ce rythme, combien de jours me faudra-t-il pour écrire tout le livre?

Problèmes de proportion inverse:
1- Quatre ouvriers construisent une maison en 300 jours. En combien de jours 10 ouvriers feront ce même travail?
2- Pour tapisser les murs d’une salle, ont a utilisé 21 rouleaux de papier de 80 cm de longueur. S’il y avait des rouleaux de papier de 120cm de longueur, combien des rouleaux de papier aurions-nous besoin pour tapisser ces même murs?
3- Pour transporter du matériel pour une construction, on a utilisé 20 camions d’une capacité de 4m3 chacun. Si la capacité de chacun de ces camions est de 5m3, combien de camions aurions-nous besoin pour faire ce même travail?
4- Une voiture parcourt une distance entre deux villes en 5 heures avec une vitesse de 90 kilomètres par heure. En combien de temps fera-t-elle le même voyage avec une vitesse moyenne de 75 kilomètres par heure?
PRÉSENTATIONS PAR AFFICHES

Belkhodja Maha
Université Laval

«Compétences» à développer à l’école du point de vue de la visualisation en géométrie dans trois et deux dimensions

Résumé : Dans les recherches en psychologie et en didactique des mathématiques, on parle de la visualisation en termes de capacités à acquérir. Dans celle que nous poursuivons, nous cherchons plutôt à identifier et à valider un ensemble de compétences à développer du point de vue de la visualisation en géométrie dans trois et deux dimensions, le mot «compétence» étant entendu dans le sens que lui donne le MEQ dans le cadre de la réforme en éducation en cours au Québec. Dans cette communication, nous présentons les deux objectifs visés par notre recherche et la méthode que nous avons décidé d’utiliser pour les atteindre.

INTRODUCTION
L’un des objectifs de l’apprentissage de la géométrie à l’école primaire et secondaire est le développement par les élèves de la capacité à visualiser dans trois et deux dimensions. Cet objectif a été grandement négligé par le passé dans les programmes scolaires de mathématiques, l’accent étant principalement mis en géométrie sur le raisonnement déductif, mais depuis les années quatre-vingt on a réaffirmé et reconnu la nécessité de lui donner plus d’importance dans l’enseignement. Dans les recherches en psychologie et en didactique des mathématiques, on parle généralement de la visualisation en termes de capacités à acquérir. Dans celle que nous avons entreprise, nous parlons plutôt de compétences à développer, le mot «compétence» étant entendu dans le sens que lui donne le MEQ dans le cadre de la réforme en éducation en cours au Québec. En fait, notre recherche consiste précisément à identifier et à valider un ensemble de compétences à développer à l’école primaire et secondaire du point de vue de la visualisation en géométrie dans trois et deux dimensions. L’intérêt et la pertinence de ce travail se justifient tant d’un point de vue théorique que pratique. Dans cette communication nous présentons les deux objectifs ainsi que la méthode que nous avons décidé d’utiliser pour les atteindre.

Actes du colloque du GDM-2003 113
PREMIER OBJECTIF DE LA RECHERCHE
Notre premier objectif est d’identifier un ensemble de «compétences» (au sens que lui donne le MEQ dans le cadre de la réforme en éducation en cours au Québec) à développer à l’école du point de vue de la visualisation en géométrie dans trois et deux dimensions, de même que les «ressources» (connaissances, habiletés, attitudes, etc.) nécessaires à leur développement et des «niveaux de développements» en fonction des cycles du primaire et du secondaire. [Pour que notre travail puisse servir à l’élaboration de curriculums et à des fins d’évaluation des apprentissages, il est important que les «compétences» en question soient en un nombre assez restreint et qu’on les considère comme se développant tout au long du préscolaire, du primaire et du secondaire suivant différents niveaux.]

De façon plus spécifique, nous chercherons à répondre à trois questions :

A- Quelles sont les «compétences» que les élèves devraient développer à l’école du point de vue de la visualisation en géométrie dans trois et deux dimensions ?

B- Quelles sont les «ressources» (connaissances, habiletés, attitudes, etc.) nécessaires au développement de ces «compétences» ?

C- Pour chacune de ces «compétences», comment définir des «niveaux de développement» en fonction des cycles du primaire et du secondaire ? Quels critères utiliser pour évaluer l’atteinte de chacun de ces niveaux ?

DEUXIÈME OBJECTIF DE LA RECHERCHE
Le second objectif de notre recherche sera de vérifier jusqu’à quel point, en mathématiques au secondaire, le curriculum officiel et les manuels scolaires utilisés au Québec durant les dernières années de même que le domaine de la mathématique du Programme de formation de l’école québécoise permettent aux élèves de développer l’ensemble des «compétences» identifiées précédemment du point de vue de la visualisation en géométrie dans trois et deux dimensions.

De façon plus spécifique, nous chercherons à répondre aux questions suivantes :

D- Quelle importance le curriculum officiel et les manuels scolaires utilisés en mathématiques au secondaire durant les dernières années accordent-ils au développement des «compétences» en question ?

E- Quelle importance le domaine de la mathématique du Programme de formation de l’école québécoise accorde-t-il au développement de ces «compétences» ?

F- Quelles améliorations pourraient être apportées à ce nouveau programme de mathématiques pour le secondaire afin qu’il permette aux élèves de mieux développer ces «compétences» ?
MÉTHODE RETENUE POUR ATTEINDRE LE PREMIER OBJECTIF

L’atteinte de notre premier objectif se fera en sept étapes.

Dans la deuxième étape nous identifierons des « composantes » des « compétences » obtenues à l’étape précédente et nous élaborerons une liste de « ressources » nécessaires à leur développement, à partir d’une analyse des concepts mathématiques en jeu.

La quatrième étape consistera en la révision des listes de « compétences », de « composantes » et de « ressources » à la lumière des conclusions de la troisième étape.

Dans la cinquième étape nous élaborerons, en fonction des cycles du primaire et du secondaire, des « niveaux de développement » des « compétences » retenues et des critères pour en évaluer l’atteinte, en tenant compte de ce qui précède et des savoirs essentiels définis par le MEQ.

La sixième étape consistera à valider les « niveaux de développements » et les critères d’évaluation trouvés à la cinquième étape, en consultant des enseignants et des didacticiens des mathématiques.

Dans la septième étape, nous réviserons les « niveaux de développements » et les critères d’évaluation à la lumière des conclusions de l’étape précédente.
MÉTHODE RETENUE POUR ATTEINDRE LE DEUXIÈME OBJECTIF

Pour atteindre notre deuxième objectif, nous procéderons en trois étapes.

La première étape consistera à répondre à la question D. Pour cela, nous utiliserons deux moyens. Le premier consistera à élaborer une grille d’analyse à partir des «niveaux de développement» des «compétences» en question. Pour chaque niveau de développement d’une compétence donnée, nous élaborerons un certain nombre de critères (par exemple la terminologie utilisée et les ressources disponibles) qui apparaîtront dans la grille. Nous tiendrons également compte dans cette grille des différents niveaux scolaires, de même que d’autres critères qui s’ajouteront en route suite à l’examen des différents documents. À l’aide de cette grille, nous analyserons le curriculum de mathématiques du secondaire du Québec des dernières années, y compris les guides pédagogiques qui l’accompagnent, du point de vue de l’importance accordée au développement des «compétences» en question. En suite, en détaillant un peu plus cette grille, nous analyserons les chapitres touchant la géométrie dans chacune des neuf séries de manuels scolaires en usage approuvées par le MEQ (Carrousel mathématiques, Scénarios, Croisières mathématiques, etc.). Cela nous permettra de vérifier jusqu’à quel point les idées véhiculées par les documents du MEQ ont été respectées lors de la rédaction des manuels scolaires. Le deuxième moyen utilisé consistera à réaliser des entrevues. D’une part, nous mènerons une entrevue auprès d’une personne ayant travaillé à la révision des programmes au milieu des années 90, afin de vérifier si notre analyse des différents documents du MEQ s’accorde avec ce qu’ils proposaient du point de vue de la visualisation en géométrie dans trois et deux dimensions. Pour réaliser cette entrevue, nous élaborerons un certain nombre de questions ouvertes en nous basant sur les différents «niveaux de développement» définis plus tôt. D’autre part, nous interviewerons des auteurs de quelques collections de manuels de mathématiques afin de mieux savoir ce qu’ils voulaient véhiculer dans leurs livres et quelle importance ils accordent à la visualisation en géométrie dans trois et deux dimensions. Ces entrevues se dérouleront à partir d’une liste de questions préparées d’avance, auxquelles s’ajouteront des sous-questions d’éclaircissement ou d’approfondissement improvisées. Toutes ces entrevues seront enregistrées sur bande audio, puis nous les transcrirons et les analyserons.

La deuxième étape permettra de répondre à la question E. À cette fin, nous userons ici deux moyens. D’abord, nous utiliserons une grille qui sera essentiellement celle de la première étape. Nous pourrons ainsi mieux voir les changements survenus en mathématiques dans le Programme
de formation de l’école québécoise par rapport aux anciens programmes. Ensuite, nous réaliserons une entrevue auprès d’une des personnes ayant travaillé à l’élaboration de la section mathématique du Programme de formation de l’école québécoise, afin de vérifier si notre analyse du nouveau programme s’accorde avec les visées de celui-ci du point de vue de la visualisation en géométrie dans trois et deux dimensions. Pour réaliser cette entrevue, nous élaborerons un certain nombre de questions ouvertes en nous basant sur les différents «niveaux de développement» définis plus tôt. Cette entrevue sera enregistrée sur bande audio puis transcrite et analysée.
Dans la troisième étape, nous chercherons à répondre à la question F, en nous basant sur la liste des «compétences» définie plutôt de même que sur les résultats des analyses et des entrevues réalisées dans les étapes précédentes.

Références

Kalifa Traore,
CIRADE, UQAM

Savoirs mathématiques traditionnels au Burkina Faso :
L’arithmétique au quotidien

Résumé : Le Burkina Faso est confronté à un défi majeur en éducation avec un taux de
scolarité de moins de 50%, celui de la nécessité d’adapter les programmes
d’enseignement aux réalités et aux besoins nationaux. Ceci s’applique en particulier en
mathématiques, où le taux d’échec apparaît important.
Nos observations nous amènent à regarder du côté des savoirs traditionnels comme
porte d’entrée possible en termes de réponse à cette question.

Contexte et situation éducative au Burkina Faso
Le Burkina Faso est l’un des pays les plus pauvres du monde avec un très faible taux de
scolarisation. En 1998, le taux d’analphabétisation\(^1\) était de 74% et le taux brut de scolarisation\(^2\)
de 40,8%. La grande majorité des enfants ayant été à l’école ne dépasse pas le niveau primaire.
Or ces derniers se retrouvent en général, dans la vie active, confrontés à certains problèmes à
résoudre (achats et ventes de produits agricoles, répartition de charges, mesures, etc.). Ils
résolvent souvent les problèmes comme s’ils n’avaient jamais été à l’école dans le meilleur des
cas, sinon ils sont esclaves de la calculatrice et incapables d’évoluer sans elle. Ce qui donne
l’impression que les mathématiques étudiées à l’école sont inutiles d’autant qu’elles ont la
réputation d’être « difficiles » et donc à l’origine de beaucoup d’échecs scolaires.
Le pays est donc confronté à un défi majeur en éducation, en particulier dans l’enseignement des
mathématiques. Les états généraux de l’éducation (EGE) au Burkina Faso sur le thème
«Consensus national pour une éducation efficiente», ont regroupé du 5 au 10 septembre 1994, les
décideurs, des éducateurs et les partenaires de l’éducation pour réfléchir sur les problèmes qui
minent le système afin d’en dégager des solutions. Dès la préface des actes des EGE (écrite par le

\(^1\) Le taux d’analphabétisme est le pourcentage de la population de la tranche d’âge de 15 à 55ans qui ne sait ni lire, ni
écrire dans aucune langue (langues étrangères et langues nationales). Autrement dit, 74% de la population ayant
entre 15 et 55ans ne sait ni lire, ni écrire.
\(^2\) Le taux brut de scolarisation est le pourcentage d’élèves du primaire par rapport au nombre d’enfants en âge de
scolarisation (dont l’âge est compris entre 7 et 12 ans).
Mélégué Traoré, ministre des enseignements secondaire, supérieur et de la recherche scientifique), on peut lire :

« Une éducation efficiente s’entend une éducation pertinente et performante au regard de la vie pratique en société et des activités socio-économiques et professionnelles dans lesquelles les jeunes issus de nos écoles s’engagent nécessairement » (Actes des EGE, 1994, p.i).

Par son thème «Consensus national pour une éducation efficiente», les EGE posent le problème de la pertinence et de l’efficience de l’éducation dans la vie pratique en société. En d’autres termes, c’est le problème du développement de l’autonomie chez les apprenants en lien avec leur contexte quotidien qui est posé.

Si les solutions proposées aux maux de l’éducation par les participants peuvent être discutées, il y a un consensus pour dire que le système éducatif burkinabè manque de pertinence et de performance au regard des exigences de la société. En effet, la grande majorité des enfants ayant été à l’école ont une courte scolarité. L’inefficacité externe\(^3\) a conduit par endroit au découragement des populations ce qui les amène à un questionnement sur l’utilité de l’école.

« une efficacité externe médiocre (ayant entraîné par endroits le découragement des populations, et par endroits encore le phénomène paradoxal de déscolarisation…) au point où l’on s’est demandé si l’éducation ainsi comprise était utile. » (Actes des EGE, p.4).

L’inadaptation des contenus des programmes et des méthodes d’enseignement à la réalité, aux besoins des populations a été maintes fois signalée comme une des causes majeures de l’inefficacité externe et interne\(^4\) du système.

Comment contribuer à un meilleur arrimage de l’enseignement des mathématiques au contexte burkinabè? Comment développer l’autonomie en mathématiques chez les élèves, de manière à les rendre aptes minimalement à se débrouiller en contexte?

Nos observations nous amènent à regarder du côté des savoirs traditionnels comme porte d’entrée possible à cette question. En effet, la situation d’analphabétisme décrite précédemment n’empêche pas la population de résoudre des problèmes quotidiens. Or la résolution de certains de ces problèmes, de certaines activités fait appel à des raisonnements mathématiques, qui ne semblent pas réinvestis dans l’école.

\(^3\) L’inefficacité externe désigne l’incapacité ou les difficultés d’insertion professionnelle des sortants du système éducatif

\(^4\) L’efficacité interne désigne le rendement interne
Objectif de la recherche
Notre recherche se veut une contribution à l’explicitation et la compréhension des savoirs traditionnels développés en contexte. Celle-ci permettra de comprendre le répertoire potentiel de connaissances, stratégies sur lequel pourrait mieux s’articuler l’apprentissage des mathématiques à l’école.

Savoirs mathématiques traditionnels : un exemple en arithmétique
Dans la vie de tous les jours la population est appelée à résoudre des problèmes du type : un plant de manguier coûte tant de francs (souvent 75 F). Le chargement d’un camion vaut tant de plants (en général 3 100 plants). Combien doit-on payer aux paysans? Les traductions de 75F et de 3 100 plants dans la langue des paysans (le siamou) sont respectivement 15 pièces de 5F et 3 « chèvres » et 100 plants.
La solution scolaire d’un tel problème serait 75F multipliés par 3 100 et la calculatrice ou le recours à l’algorithme de multiplication conduirait au résultat. Les procédures mathématiques utilisées en contexte semblent bien loin de cette réalité.
En effet, une solution en contexte que nous avons observée, se présente de la façon suivante : une plantes coûte 15 pièces de 5F. Donc une chèvre de plants feront 15 chèvres de pièces de 5F. Si on ajoute une chèvre de plants encore, on aura 30 chèvres de pièces de 5F. En ajoutant la dernière chèvre de plants, on obtient 45 chèvres de pièces de 5F. Les 3 chèvres de plants valent alors 45 chèvres de 5F. Il reste les 100 plants qui font 1 chèvre et 5 cents pièces de 5F. La démarche habituellement utilisée par les paysans est la suivante : 3 chèvres de plantes coûtent 45 chèvres de 5F. 100 plants coûtent 1 chèvre et 5 cents de 5F. Si on ajoute cela aux 45 chèvres, on aura 46 chèvres et 5 cents de 5F.
De cet exemple, on peut déduire qu’il existe un savoir mathématique non appris à l’école construit en contexte, dont les procédures différent certainement de celles de l’école, mais méconnu du système scolaire.

Conclusion
La réalité ou le contexte burkinabè est caractérisé par l’oralité, l’implicite, l’absence de l’écriture dans la culture traditionnelle tandis que la vie scolaire est d’abord et avant tout la lecture et l’écriture. L’exemple précédent pointe par ailleurs l’écart entre les « pratiques » mathématiques...
scolaires et les « pratiques » mathématiques que l’on peut rencontrer en contexte. Il nous montre l’importance d’aller plus loin pour mettre en évidence les connaissances mathématiques développées en contexte, dans la vie quotidienne, et le rôle du contexte dans cette résolution de problème. L’élève burkinabè est confronté à deux mondes mathématiques qui semblent s’ignorer et pouvant donc se contredire : les mathématiques scolaires et les « mathématiques » de la vie quotidienne.

Références bibliographiques

Jérôme Proulx
Université du Québec à Montréal

Explications orales des futurs enseignants en classe de mathématiques au secondaire : une étude de cas

Résumé : Une étude de cas a été menée pour tenter de mieux comprendre la dynamique existante chez un futur enseignant de mathématiques concernant ses pratiques de classe relatives à ses explications orales. Par l’entremise de l’analyse de leçons de stage (3) et d’une entrevue a posteriori, nous avons pu décrire les caractéristiques importantes de ses explications orales et mettre en lumière la rationalité sous-jacente à ses prises de décisions. L’analyse fait ressortir la présence d’une ambivalence chez le stagiaire concernant ses intentions d’enseignement, ses influences et ses pratiques de classe, traçant un portrait assez fidèle d’une personne en formation et en plein apprentissage.

1. Problématique

1.1 Origine du questionnement

La formation didactique que j’ai personnellement suivie en tant que futur enseignant dans le cadre du programme de formation des maîtres de l’Université du Québec À Montréal (UQÀM) s’articule autour des pratiques des enseignants en salle de classe (Bednarz, Gattuso et Mary, 1995; Bednarz, 2001). Cette articulation de la formation des maîtres sur la pratique en action comporte plusieurs visées dont le développement de la capacité des futurs enseignants à verbaliser et à expliquer en mots les mathématiques, c’est-à-dire à «faire parler les mathématiques» (Bednarz, 2001). Cette expérience personnelle de formation nous a fait nous intéresser aux explications orales des futurs enseignants en classe [en action]. Il nous semblait important de mieux comprendre l’apport de ce travail fait à la formation sur les capacités et les façons d’expliquer les mathématiques chez les futurs enseignants du secondaire.

1.2 Objectifs de recherche

Notre premier objectif de recherche fut donc de tenter de mieux comprendre et mieux connaître les caractéristiques possibles des explications orales des futurs enseignants de mathématiques. Cependant, vouloir comprendre et décrire les explications orales ne pouvait se faire sans tenir compte de la rationalité sous-jacente (les intentions et les influences) motivant les prises de décisions du futur enseignant concernant ces mêmes explications orales. Ainsi, plusieurs facteurs
entrent en ligne de compte dans les prises de décisions, et ces aspects se doivent d’être connus pour arriver à mieux comprendre et décrire toute la dynamique existante chez le futur maître. Nos deux objectifs de recherche furent donc de caractériser les explications orales des enseignants de mathématiques en formation lorsqu’ils interviennent en salle de classe et de connaître les facteurs orientant le choix de ces explications orales.

2. Méthodologie de recherche
2.1 Orientation méthodologique retenue
Pour répondre à nos objectifs, nous avons effectué une étude de cas [provenant d’une étude multicas dans le cadre de notre mémoire de maîtrise (Proulx, 2003)]. Le choix de l’étude de cas nous permettait de faire une analyse fine et de sonder en profondeur les aspects complexes intervenant chez le futur enseignant en situation d’enseignement (Karsenti et Demers, 2000).

2.2 Le sujet retenu
L’étudiant retenu, Albert, était en 2ème année de formation du programme de baccalauréat en enseignement des mathématiques au secondaire de l’UQÀM et il complétait un 2ème stage de formation en enseignement des mathématiques. Son sujet d’enseignement était la factorisation algébrique de secondaire 4; ce sujet avait été peu abordé dans le cadre de sa formation didactique.

2.3 Présentation de la cueillette de données
Pour répondre à nos objectifs, nous avons utilisé 2 outils de cueillette : des vidéos (3) de leçons enregistrées en stage à différents moments [pour caractériser et décrire les explications orales] et une entrevue avec le stagiaire après son stage [pour comprendre et faire ressortir la rationalité (intentions et influences) sous-jacentes à ses prises de décision]. Le protocole d’entrevue (semi-structuré) a été élaboré sur la base d’une pré-analyse globale des vidéos du stagiaire.

1 Le mot «complexe», ici, est extrêmement important et se doit d’être distingué du mot «compliqué». «Compliqué» signifie, en effet, difficile à comprendre, alors que l’utilisation de «complexe» réfère davantage à une dynamique dans laquelle plusieurs variables et facteurs interagissent et entrent en ligne de compte pour enrichir le phénomène ou le contexte, mais sans nécessairement en «complier» le phénomène en question.
3. Analyse du cas Albert
3.1 Caractéristiques des explications orales d’Albert
La structure des leçons d’Albert se décrit par le modèle «théorie-exercice», c’est-à-dire qu’il présente les notions théoriques au début de son cours et, par la suite, propose des exercices divers aux élèves, tout en les résolvant avec eux. Les propos d’Albert sont axés majoritairement sur l’explication répétitive de techniques et de procédures de type instrumental (Skemp, 1978) –le comment faire, la marche à suivre. Toutefois, ses explications sont structurées autour d’un «pattern» d’explications logiques par étape suivant un enchaînement bien défini, c’est-à-dire qu’il y a un lien explicite entre les étapes proposées². Finalement, il y a aussi présence dans les explications de quelques «trucs» à apprendre et d’une insistance sur un format rigide attendu pour donner les réponses [les réponses adéquates dans un format différent étaient refusées].

3.2 Caractérisation de la rationalité sous-jacente
3.2.1 Les influences
L’influence majeure ayant joué un rôle important et significatif sur les prises de décisions d’Albert dans son enseignement fut son maître associé. Ce dernier imposait à Albert d’axer son enseignement sur l’apprentissage de procédures et de techniques, ainsi que sur une seule et unique manière de faire pour factoriser et donner la réponse (Ce qui explique la raison pour laquelle Albert exigeait un format précis et refusait tout autre réponse, bonne ou mauvaise.).

Deux autres influences importantes chez Albert furent sa formation des maîtres et sa vision des mathématiques. Albert dit être allé puiser des idées d’enseignement pour l’aider à mieux enseigner dans sa formation : il a donc utilisé sa formation comme ressource d’enseignement [et nous retrouvons certaines idées de ces idées mentionnées dans ses pratiques : problèmes, activités, etc.]. Pour ce qui est de sa vision des mathématiques, il semble accorder de l’importance à une vision formelle des mathématiques (axée sur l’algèbre et son symbolisme) et attribuer un statut supérieur à l’algèbre et au symbolisme dans la hiérarchie des apprentissages³.

² C’est un procédé qui s’approche énormément de l’«algorithmique» utilisée en informatique.
³ Il est évident que le sujet enseigné peut avoir eu un effet ici. Cependant, ses propos sont souvent émis de façon générale, s’appliquant donc possiblement à toutes les notions.
3.2.2 Les intentions d’enseignement

Une intentions importante chez Albert est de **favoriser la compréhension des élèves** en optant pour une vision «anti-règle» –il affirme que l’apprentissage des règles ne favorise pas la compréhension. Évidemment, cette intention est demeurée au niveau du discours désirable et n’a jamais été mise en action, puisque son maître associé lui a imposé de montrer ces règles et ces procédures; il nous a affirmé qu’il ne l’aurait pas fait ainsi s’il avait eu le choix.

Une autre intention importante est de **se ramener à quelque chose de connu et de faire des liens**. L’intérêt pour Albert, ici, est de mettre l’élève en confiance pour qu’il se sente à l’aise face à la nouvelle matière –Albert fait de nombreux liens avec la matière déjà connue. Cela est aussi très cohérent avec ses explications orales qui suivent un «pattern» par étape et un enchaînement.

Puis, Albert souligne trois autres intentions. La première concerne aussi l’idée de mettre l’élève en confiance en introduisant les nouveaux sujets «en douceur», c’est-à-dire sans entrer de façon trop formelle dès le début [ici, on peut sentir une légère contradiction avec sa vision formelle des mathématiques]. Les deux autres intentions sont à un niveau technique : une est reliée à l’intérêt de donner des «trucs» efficaces pour que les élèves se souviennent mieux des notions et l’autre concerne l’intention d’amener les élèves à résoudre uniquement par l’algèbre [ce qu’il appelle «faire sa job»] –ceci est très lié à sa vision formelle et symbolique des mathématiques.

Finalement, il est facile de percevoir quelques ambivalences dans les propos d’Albert : plusieurs points soulevés entrent en légère ou forte contradiction. Dans la dernière partie, nous tenterons de faire ressortir des aspects de façon concise pour permettre de faire émerger cette ambivalence.

4. Discussion

La sensation d’une ambivalence dans le discours d’Albert se fait sentir à plusieurs endroits, en voici quelques uns. La question des intentions non-réalisées concernant l’enseignement «anti-règle» est évidemment un des premiers points les plus importants à soulever. Le fait qu’Albert affirme avoir voulu enseigner ce qu’il appelle la «compréhension» sans toutefois avoir pu le faire soulève un questionnement au niveau de ses intentions personnelles d’enseignement – évidemment, l’influence du maître associé a été déterminante dans ce cas.

Un deuxième point concerne l’enseignement des techniques de factorisation. Au début de l’entrevue, Albert se prononce contre les règles en affirmant qu’il n’aurait pas enseigné ces techniques s’il n’avait pas été obligé. Toutefois, par la suite, il affirmera que ces techniques
étaient finalement intéressantes et qu’il les enseignerait à nouveau s’il en avait la chance. Pour le reste de l’entrevue qui suivra, il glissera continuellement d’un discours à l’autre en affirmant aussi souvent que ces techniques sont bonnes ou sont mauvaises. Il est donc très difficile de se positionner par rapport à son discours d’entrevue et ses véritables intentions/croyances.
Finalement, un dernier aspect concerne sa vision de la liberté. Malgré le fait qu’Albert affirme que son maître associé lui avait imposé une façon précise d’enseigner et que ce dernier vérifiait tout ce qu’il faisait (par la lecture de ses planification et par une présence continue en classe), Albert nous a affirmé qu’il avait eu toute la liberté possible, ce qu’il appelait le « feu vert ». Nous nous questionnons évidemment sur la perception de la liberté pour Albert.
Ces quelques éléments, et il y en aurait davantage à citer, font ressortir la présence d’une ambivalence dans le discours d’entrevue d’Albert ENTRE un enseignement axé sur la compréhension des élèves et leur progression ET un enseignement insistant sur l’appropriation de techniques et sur le statut formel et symbolique des mathématiques. Il est donc difficile de savoir précisément où se situe Albert à l’intérieur de tout cela.
Cependant, malgré le fait que nous, chercheurs, notions la présence d’une tension ou d’une ambivalence dans ses propos, cette contradiction ne semble pas être vécue par lui. Il semble donc glisser d’un propos contradictoire à un autre sans vraiment s’en rendre compte.

5. Conclusion
Il est important de souligner la présence d’une cohérence au niveau de l’acteur entre les intentions, les influences et les pratiques –malgré qu’un œil externe pourrait en juger autrement.
Pour nous, Albert semble être un bon exemple de quelqu’un «en apprentissage», c’est-à-dire de quelqu’un qui tente de recevoir et d’assimiler les stimulus provenant de diverses sources (ses expériences personnelles, ses croyances, son maître associé, sa formation universitaire, etc.). Ainsi, plusieurs facteurs se confrontent chez lui et contribuent à former son identité d’enseignant. Finalement, la métaphore servant à décrire Albert serait celle d’un jeune adulte formant petit à petit sa vision personnelle du monde [à travers diverses expériences], mais son statut l’amène à agir et à fonctionner en accord avec les normes imposées par ses parents.
Bibliographie

Table ronde

Nadine Bednarz

Département de mathématiques et CIRADE
Université du Québec à Montréal

Digression sur la notion d’autonomie et son apport en didactique des mathématiques

1. Pourquoi la notion d’autonomie? Quelle pertinence peut-elle avoir pour la réflexion sur l’apprentissage et l’enseignement des mathématiques?

À la base des travaux de recherche en didactique des mathématiques qui se sont développés depuis plus de vingt ans, on retrouve l’utilisation de plusieurs concepts féronds, comme celui d’erreur, de conception, d’obstacle, de situation didactique, de contrat... Ces concepts ont permis de rendre compte du processus de construction de connaissances de l’enfant, de l’élève à différents niveaux scolaires, et ce dans différents domaines (on peut par exemple penser aux recherches portant sur les conceptions des élèves à propos de concepts spécifiques, ou aux recherches portant sur les obstacles de divers ordres, épistémologiques, didactiques, cognitifs, …en lien avec l’apprentissage de concepts donnés). Ces concepts ont permis également de fonder l’élaboration de séquences d’enseignement reposant sur un certain nombre d’analyses préalables, ou l’analyse de manière plus globale des phénomènes d’enseignement (on peut penser ici aux travaux réalisés autour des concepts de situation et contrat didactique).

Le concept d’autonomie dans ces recherches n’est nullement présent. On pourrait d’ailleurs sans doute parler des exemples qui nous ont été présentés dans ce colloque sans aucunement référer au concept d’autonomie. On est donc en droit de se demander quelle est la pertinence de ce concept pour la didactique des mathématiques? Qu’apporte-t-il réellement?

Mes propres travaux de recherche en didactique des mathématiques, qu’ils portent sur la construction d’un sens à l’écriture des nombres par les enfants, les difficultés associées à la résolution de certains types de problèmes, la construction d’un symbolisme ou encore plus récemment la transition arithmétique algèbre dans un contexte de résolution de problèmes et le développement du raisonnement algébrique, rejoignent sans doute le développement de
l’autonomie de l’élève en mathématiques, au sens courant du terme. Les recherches portant sur la construction du symbolisme par les enfants (en lien avec la numération, les opérations ou le raisonnement algébrique) cherchent en effet à développer chez les élèves un regard plus averti et réflexif au symbolisme, de telle sorte que les élèves en saisissent bien toute la portée et les limites (Bednarz et al., 1993). Qu’elles aient trait à la numération, à la résolution de problèmes, au développement de l’algèbre, ces recherches mettent toutes l’accent sur le développement de raisonnements de la part des élèves, sur une ouverture à différents points de vue, une prise en compte des expériences antérieures, la construction d’un sens aux méthodes, symboles et concepts, et le développement d’une certaine flexibilité (voir par exemple Bednarz, Dufour-Janvier, 1984, Bednarz, Labrosse, 2001; Bednarz, 2001). Sans parler spécifiquement dans ces travaux du concept d’autonomie, on retrouve donc, dans les différentes interventions mises en place avec des groupes d’élèves en classe, des éléments allant dans le sens de son développement chez les élèves. Un peu comme M. Jourdain, le chercheur en didactique fait sans doute ainsi de la prose sans le savoir! Mais pourquoi dès lors rendre explicite ce concept d’autonomie? Quel intérêt cela peut-il avoir?

Je comprends fort bien la nécessité, pour les organisateurs de ce colloque, de la mise en débat de ce thème, compte tenu de sa présence de plus en plus grande dans les programmes d’études (MEQ, 2000, 2003). Une avancée sur la question précédente (quel intérêt peut avoir le concept d’autonomie pour la didactique des mathématiques) demande, pour aller plus loin, de mieux saisir cette notion.

2. Que recouvre le terme autonomie?

Pour pouvoir voir la portée de cette notion pour les questions d’apprentissage, d’enseignement des mathématiques, et éventuellement de formation à l’enseignement des mathématiques, un petit exercice préalable d’analyse conceptuelle s’impose. Nous essaierons de dégager à travers ce qui suit le sens de ce concept, en mettant en évidence à partir de ce travail, les éléments (ils apparaîtront dans le texte en italiques) qui nous semblent riches pour notre propre réflexion.

Le concept d’autonomie est un concept importé d’autres domaines, dans ce cas la sociologie, l’éthique et la morale, la psychologie. Étymologiquement, l’autonomie (du grec auto-nomos, qui se régit par ses propres lois) renvoie à la « condition d’une personne ou d’une collectivité qui détermine elle-même la loi à laquelle elle se soumet » (Lalande, 1960, p 101). L’autonomie, ainsi
définie, ne réfère donc pas uniquement à une dimension individuelle, mais également à une dimension sociale, collective (ou peut par exemple ici penser à un groupe classe, à une équipe d’enseignants…). On retrouve par ailleurs, sous la caractéristique mise en évidence de l’autonomie (qui détermine elle-même la loi à laquelle elle se soumet) un choix de l’individu ou de la collectivité, à la base même de la démocratie.

La notion d’autonomie est polysémique, elle recouvre différentes acceptions en lien avec les domaines où elle s’est développée.

- Ainsi en biologie, elle signifie la « capacité de tout être vivant, de la cellule à l’organisme, de préserver son unité, sa propre constance, face aux variations de l’environnement » (Baraquin et al., 1995, p 36). N’y a-il pas là une question de viabilité importante (Il y va en quelque sorte de la survie de cet être vivant en interaction avec l’environnement).

- En sociologie, l’autonomie renvoie au « pouvoir d’un groupe de s’organiser et de s’administrer lui-même, du moins sous certaines conditions et dans certaines limites » (Lalande, 1960, p 101). Celle-ci prend donc place dans certaines conditions et limites, elle ne fonctionne pas sans réserves.

- En éthique et morale, l’autonomie est associée à la « liberté de l’homme qui, par l’effort de sa réflexion propre, se donne à lui-même ses principes d’action. » (Ibid, p 101)

En ce sens, l’autonomie s’oppose à l’hétéronomie, à une servitude absolue, à une soumission aux lois externes. Elle demande au contraire un choix réfléchi, pensé. On retrouve sous la citation (liberté de l’homme qui, par l’effort de sa réflexion propre, se donne à lui-même ses principes d’action) la référence à un acteur social compétent (que celui-ci soit un élève, un enseignant, un formateur dans notre cas) capable de faire des choix réfléchis, pensés, des choix pouvant éventuellement d’être explicités aux autres. Elle suppose chez cet acteur une certaine rationalité sous-jacente, guidant son action.

Cette autonomie de l’individu ne va pas à l’encontre de la prise en compte de la société, des règles du groupe social dans lequel il s’insère. Les auteurs distinguent très clairement en ce sens l’autonomie de l’anomie.

1 L’hétéronomie (du grec heteros : autre et nomos : loi) renvoie à « la condition d’une personne ou d’une collectivité qui reçoit de l’extérieur la loi à laquelle elle se soumet » (Ibid, p 142)

2 L’anomie (composé du grec a : privatif et nomos : règle, loi) renvoie à l’absence d’organisation, de coordination « L’état de dérèglement, ou d’anomie » (Durkheim, 1985, p 281) absence de loi, de consensus… à des individus qui vivent chacun côte à côte sans règle commune (Durkheim, 1991)
« L’individu autonome ne vit pas sans règles, mais il n’obéit qu’aux règles qu’il a choisies après examen » (Ibid, p 101).

Il y a donc dans le fait d’être autonome non pas un rejet du groupe social et des lois, des règles qui le gouvernent mais l’idée d’une certaine liberté d’action, de choix à l’intérieur de ces contraintes. L’individu ne subit pas les lois de façon passive, il les fait sienne, les accepte, part d’elles pour éventuellement les transformer.

Le concept d’autonomie tel qu’il se dégage des caractéristiques précédentes est donc fondamentalement social et renvoie à la formation d’un citoyen responsable, critique.

Sur un autre plan (on réfère ici à l’autonomie intellectuelle), dans la théorie piagétienne, la personne autonome est, nous dit Kamii (cf. cet ouvrage) une personne capable de prendre en considération tous les facteurs pertinents à la prise de décision en discernant ce qui est vrai du faux. Ceci place au cœur du développement de l’autonomie en mathématiques chez les élèves l’importance de la validation, et la nécessité de faire un travail en ce sens.

3. Ce qui se dégage de l’analyse précédente

Cette brève analyse du concept d’autonomie met au premier plan la formation d’un citoyen responsable, c’est-à-dire :

- Capable de choix réfléchis, mettant en jeu une certaine analyse (dans l’action et sur l’action).
- Capable de choix justifiés, pouvant êtres expliqués aux autres (l’idée de validation apparaît ici centrale).
- Capable d’un regard critique sur une règle, une loi, une situation qui lui est proposée.

À l’opposé de la soumission, la personne autonome ne subit pas les lois, les propositions de façon passive, ce qui ne veut pas dire qu’elle ne les accepte pas. Elle part d’elles éventuellement pour les transformer. Quelles sont les implications de ceci pour l’apprentissage, l’enseignement des mathématiques et la formation à l’enseignement?

3.1. Du point de vue de l’élève et de son apprentissage des mathématiques

Un choix réfléchi, pensé, justifié de la part des élèves ne peut se faire que s’il y a eu construction d’un sens aux concepts mathématiques, sens sur lequel l’élève va pouvoir s’appuyer dans les raisonnements qu’il mettra en place pour résoudre. Elle implique le développement de
l’argumentation, d’un contrôle à l’égard des situations, un jugement critique à l’égard de celles-ci. Elle implique enfin la nécessité de développer une certaine flexibilité lui permettant de fonctionner dans différents cadres, rendant possible une ouverture à différents points de vue, une capacité d’adaptation.

3.2. Du point de vue de l’enseignement
L’enseignement des mathématiques peut s’analyser à travers l’étude des contraintes et des choix que l’enseignant offre aux élèves : possibilités d’ouverture à l’exploration, à l’argumentation, à la construction de sens, à la validation, à la dimension critique…
Développer l’autonomie en enseignement des mathématiques renvoie dès lors à la capacité de prendre en compte les contraintes institutionnelles, de travailler à l’intérieur de ces contraintes (programme, évaluations, groupe classe, fonctionnement de l’école,…etc.) à installer et maintenir une certaine culture de classe en mathématiques, qui favorise l’argumentation, la construction de sens, le jugement critique…. Elle permet de partir de ces contraintes (programmes, évaluations…) pour éventuellement les faire évoluer, L’enseignement est ici vu comme un processus d’adaptation interactive à une culture qui produit récursivement la culture elle-même (Bauersfeld, 1994)

3.3. Du point de vue de la formation à l’enseignement
La formation à l’enseignement peut être analysée en termes d’options et de contraintes que le programme de formation offre au futur enseignant, pour l’amener à passer de sa position d’étudiant à celle d’enseignant, en vue de se construire une autonomie professionnelle : comment par exemple comprendre ce que les élèves font et tentent de démontrer? Comment varier les tâches en mathématiques spontanément, au bon moment? Comment encourager ce qui s’anonce prometteur, cerner le potentiel d’une situation? Comment développer l’argumentation, le sens critique? Comment encourager différents points de vue?
Une telle entrée dans la formation, qui peut être exploitée dans les cours de didactique et dans les stages, suppose, de la part du futur enseignant et du formateur, un retour réflexif sur les orientations qui guident ses activités, ses actions… une ouverture à d’autres points de vue. Le choix éclairé, analysé, justifié s’applique là aussi.
En conclusion, pour revenir à la case départ, ce qu’apporte la notion d’autonomie aux travaux en didactique des mathématiques, portant sur les questions liées à l’apprentissage, à l’enseignement ou à la formation des maîtres, est d’abord, à la lumière de la définition du concept d’autonomie et de ce qui s’en dégage, une prise de conscience de la dimension sociopolitique de cette formation. Le concept d’autonomie contribue peut-être à poser le problème de la formation autrement, sous l’angle des liens entre cette formation en mathématiques, en enseignement des mathématiques, en formation en enseignement et la celle de la formation d’un citoyen averti, critique.

Références

Renée Caron
intervenante en didactique des mathématiques

Développer l'autonomie de l'élève à l'école et en mathématiques, est-ce possible?

Tout d'abord l'expression « développer l'autonomie de l'enfant » semble elle-même porteuse d'ambiguïtés, de contradictions. Elle me rappelle une autre expression qu'on retrouvait dans les objectifs de certains programmes scolaires des année 80 : «Rendre l'enfant capable de …» Cette dernière expression, bien qu'elle ait reflété les bonnes intentions de l'époque restait marquée par le caractère, le plus souvent, coercitif de l'école. Ne devrait-on pas plutôt dire: «Favoriser le développement de son autonomie par l'enfant».

Mais la vie étant semée d'ambiguïtés et de contradictions que nous parvenons souvent à réconcilier dans l'action, il est sans doute possible, à l'école comme ailleurs, de réconcilier certaines contradictions dans ce jeu des rôles et des interactions entre chacune et chacun des acteurs de l'école. Je crois que d'une réforme officielle et d'une réforme personnelle à l'autre, il est possible de progresser dans le sens de cet idéal proposé par Piaget et rappelé au début de ce colloque par Constance Kamii: «Une personne autonome est capable de prendre en considération tous les facteurs pertinents pour décider, indépendamment des punitions et des récompenses, de ce qui est correct ou incorrect dans le domaine moral et de ce qui est vrai ou faux dans le domaine intellectuel.»

Examinons donc quelques-uns des éléments d'ambiguïté et de contradiction dont je viens de parler et qui constituent encore le vécu scolaire de la plupart des jeunes d'aujourd'hui. Tout d'abord, ce ne sont pas eux qui ont fait le choix d'être à l'école pour apprendre, c'est la société qui a fait ce choix, au nom de leur droit. Si quelques parents peuvent se payer le luxe et la chance de s'occuper de l'éducation de leurs enfants, même dans ses aspects académiques, la plupart s'en remettent aux choix que la société leur offre pour scolariser leurs enfants. Les enfants sont donc, comme nous le rappelle le chercheur américain Philip W. Jakson1, les seules personnes qui passent la plus grande partie de leur temps dans un endroit qu'ils n'ont pas choisi à faire des choses qu'ils n'ont pas choisi de faire, les seuls, avec les prisonniers. Et pour eux comme pour les

prisonniers, la première règle est la survie. Dans un tel contexte, il convient de se demander de quelle autonomie l'enfant a les moyens.

Pour survivre, l'enfant choisit généralement de ne pas déplaire à celle ou celui qui exerce le pouvoir dans la classe. C'est un fait connu de toute personne qui a une certaine expérience de l'école que les jeunes enfants sont des experts dans l'art de décoder les attentes des adultes qui en ont la charge. Ils apprennent tôt à identifier ce qui est important pour leurs enseignantes ou leurs enseignants. En mathématiques, par exemple, on aura beau répéter que c'est la résolution de problème qui est importante, si la plus grande partie du temps consacré à l'activité mathématique est passée à apprendre et réciter des tables et des définitions, ils concluront rapidement que ce qui est important ce sont ces tables et ces définitions et c'est ce à quoi ils consacreront le plus gros de leur énergie.

Si l'enfant a l'autonomie dont il a les moyens, ceux qui ont la charge de son éducation exercent eux aussi une autonomie qu'on peut qualifier de «limitée». Même les parents qui choisissent d'assumer sans l'aide de l'école la scolarisation de leurs enfants doivent faire la preuve de certaines compétences et se soumettre à certaines contraintes imposées, légitimement d'ailleurs, par la société au nom du droit de l'enfant. Les choses ne sont donc pas si simples.

Que dire alors de l'autonomie des enseignantes et des enseignants dans un tel contexte? En plus d'avoir à assurer les apprentissages des jeunes qui leur sont confiés dans le cadre d'un programme scolaire défini par le Ministère de l'éducation, ils doivent tenir compte:

- d'attentes quelquefois contradictoires des parents, attentes qui sont souvent assez éloignées de celles prescrites par les programmes;
- de pressions de collègues qui souhaitent que l'éducation respectent leur vision de l'éducation plutôt que celle définie socialement par le biais des programmes;
- de la préparation et des apprentissages des jeunes qui se retrouvent dans leur classe;
- de la formation pédagogique et disciplinaire qu'ils ont eux-mêmes reçue;
- etc.

Comme on le voit c'est aux enseignantes et aux enseignants que revient, jour après jour, le rôle de résoudre les ambiguités et de réconcilier les contradictions. Comment peuvent-ils y arriver? Pour illustrer ma réponse, j'aimerais recourir à ma propre expérience d'enseignante. Avec les années, je
me suis rendu compte qu'elle était similaire à celle de nombreuses autres personnes que j'ai côtoyées tout au long de ma carrière.

Après ma première année d'enseignement, je n'étais pas satisfaite de ce que j'avais accompli. Je n'aurais pas su expliquer pourquoi, comme je pourrais le faire maintenant à partir de considérations théoriques et d'une expérience désormais acquise, mais je savais que quelque chose n'allait pas. Mon application assez systématique des cours de méthodologie, la didactique de l'époque, n'avait pas donné les résultats que j'attendais.

Devant ce sentiment d'insatisfaction, j'ai cherché plus ou moins consciemment à recréer l'atmosphère de l'année d'étude primaire pendant laquelle je m'étais sentie le plus en sécurité dans une classe où régnait la sérénité, à tout le moins pour moi. Je ne sais pas si c'est mon sentiment de sécurité qui affectait les élèves ou leur habitude de fonctionner dans le modèle d'intervention que j'utilisais mais il se trouve qu'ils ont bien fonctionné dans cette démarche.

J'aurais probablement conservé ce modèle simple d'enseignement sécurisant si mes élèves ne m'avaient donné, malgré tout, des signes discrets de leur insatisfaction qui en se manifestant me ramenaient à mes croyances en matière d'éducation.

C'est quand j'ai eu la chance de travailler plusieurs années de suite avec le même groupe d'élèves que j'ai perçu les véritables opportunités de changer. Tout d'abord, le fait de travailler ensemble plus d'une année nous a permis de mieux nous connaître et de nous faire confiance. En me référant à cette expérience, j'en arrive à me dire que les classes de cycle proposées par le Ministère de l'éducation où les élèves passeraient deux ans avec la même enseignante représentent sans doute une bonne idée.

Mes premiers gestes de confiance se sont manifestés d'abord au niveau de gestion de la classe, puis ensuite avec l'apprentissage du français et, progressivement, dans les autres disciplines. Dans le cas des mathématiques, j'ai commencé tout naturellement en leur demandant comment ils feraient pour trouver le résultat de telle opération ou la solution de tel problème. Je me souviens particulièrement de la période où j'ai introduit la division de fractions en classe. L'idée de tenter de leur faire « avaler » ce que j'avais moi-même refusé alors que j'étudiais au primaire, à savoir que pour diviser par une fraction on n'a qu'à multiplier par la fraction inverse, m'avait particulièrement incitée à faire appel à leur contribution. J'avais été désarmée par la simplicité de l'algorithme qu'ils avaient proposé: mettre les deux nombres au même dénominateur et diviser le numérateur du diviseur par le numérateur du diviseur.

Actes du colloque du GDM-2003 136
Mais est-ce qu'on parle d'autonomie ici? Si on revient à Piaget, on constate que ces élèves étaient capables d'élaborer une démarche qui convenait pour la situation donnée et que cette démarche s'était élaborée à partir des choix qu'ils avaient faits et des décisions qu'ils avaient prises. Dans le domaine intellectuel, il semble bien que ce soit des manifestations d'un comportement autonome. Mais diront certains, l'autonomie, c'est bien plus que cela. À la limite, bien que ce soit peu vraisemblable étant donné la très grande «bonne volonté» des enfants, l'enfant devrait avoir le droit de refuser de s'engager dans un problème qui ne l'intéresse pas. Je dirais que c'est probablement ce qu'ont fait tous les enfants de toutes les écoles du monde depuis les débuts de l'éducation scolaire. Et si tel a été le cas, c'est probablement parce qu'ils ne pouvaient faire autrement, ce qui expliquerait le succès assez relatif de l'école en général car nous savons que l'élève, peu intéressé par les situations de classe, apprend peu à l'école et que quand il apprend, il le fait un peu à la manière des prisonniers qui n'ont pas le choix. Le savoir ainsi acquis a peu de chance de devenir productif.

L'élève peut-il faire preuve d'autonomie dans ses apprentissages scolaires? Je crois que nous pouvons répondre à cette question par l'affirmative. L'école, elle, a-t-elle la possibilité de lui proposer des situations qui vont suffisamment susciter son intérêt pour qu'il s'y engage dans la majorité des cas? Je répondrais encore par l'affirmative étant donné la bonne volonté des enfants et la grande diversité des situations problèmes qu'on peut leur proposer.

L'école doit cependant faire plus que compter sur la bonne volonté des enfants. Nous devons présenter aux jeunes des situations à partir desquelles ils seront «énergisés», motivés parce que ces situations feront appel à un intérêt profond qui repose sur le besoin de «devenir» de chacun et transforme la classe en véritable communauté de savoir.

J'aimerais illustré ce point de vue à partir de l'outil mathématique par excellence dont disposent les élèves d'aujourd'hui, la calculatrice. À partir de cet exemple, on verra, je crois, qu'il est possible de le faire dans toutes les disciplines.

Je vais de nouveau parler de mon expérience. Avec les années, au lieu de leur proposer des activités que j'avais préparées, j'en suis venue à leur demander de me parler de ce qu'ils savaient au sujet de la calculatrice et de ce qu'ils voulaient savoir de plus. C'est ainsi, par exemple, que l'intérêt de jeunes élèves de troisième année pour la touche de la racine carrée nous a conduit, eux et moi, bien au-delà de ce qu'aucun programme n'osera jamais leur demander à cet âge. À partir de l'analyse des résultats obtenus pour certains nombres qu'eux et moi avions choisis, ils en
étaient presque tous venus, après une exploration d'une heure à pouvoir calculer, mentalement au dixième près, la racine carrée de n'importe quel nombre naturel plus petit que 100.

C'est souvent insécurisant de travailler ainsi: insécurisant parce qu'on risque de ne pas trouver les bonnes questions et les bonnes pistes d'exploration qui vont leur permettre d'avancer et de faire des découvertes, insécurisant aussi, parce qu'on risque de ne pas très bien comprendre la démarche que certains élèves suivront. Quelquefois, en sortant de la classe, on comprend soudainement ce qu'un élève a voulu nous dire et il est trop tard. Si on revient sur le sujet le lendemain ou une heure plus tard, le sujet est déjà hors contexte et l'élève qui avait fait l'observation a lui-même déjà perdu l'intérêt pour cette question précise.

Mais c'est une chose possible à partir du moment où on a suffisamment confiance en soi pour se dire qu'on peut se tromper, qu'on peut faire des erreurs mais que ce sera sûrement moins grave que d'imposer jour après jour aux élèves des situations qu'on a développées sans leur contribution. Rechercher leur contribution signifie les reconnaître avec leurs savoirs et leurs compétences et cette reconnaissance va leur permettre de bâtir une confiance à partir de laquelle ils pourront développer leur autonomie.
Liste des participants au colloque GDM-2003

<table>
<thead>
<tr>
<th>Nom</th>
<th>Prenom</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenault</td>
<td>Catherine</td>
<td>Université du Québec à Rimouski, Campus de Lévis</td>
</tr>
<tr>
<td>Adhou</td>
<td>Adolphe</td>
<td>Université de Montréal</td>
</tr>
<tr>
<td>Amani</td>
<td>Ahmed</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Barallobres</td>
<td>Gustavo</td>
<td>Université de Montréal</td>
</tr>
<tr>
<td>Belkhojda</td>
<td>Maha</td>
<td>Université Laval</td>
</tr>
<tr>
<td>Bernarz</td>
<td>Nadine</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Caron</td>
<td>France</td>
<td>Université de Montréal</td>
</tr>
<tr>
<td>Caron</td>
<td>Renée</td>
<td>?</td>
</tr>
<tr>
<td>Champagne</td>
<td>Lynne</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Cyr</td>
<td>Stéphane</td>
<td>Université du Québec à Trois-Rivières</td>
</tr>
<tr>
<td>De Flandre</td>
<td>Charles</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Deblois</td>
<td>Lucie</td>
<td>Université Laval</td>
</tr>
<tr>
<td>Drapeau</td>
<td>Geneviève</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Émond</td>
<td>Marie</td>
<td>Commission scolaire Marie-Victorin</td>
</tr>
<tr>
<td>Gagné</td>
<td>Stéphane</td>
<td>Commission scolaire Ste-Hyacinthe</td>
</tr>
<tr>
<td>Gattuso</td>
<td>Linda</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Gaulin</td>
<td>Claude</td>
<td>Université Laval</td>
</tr>
<tr>
<td>Gauthier</td>
<td>Diane</td>
<td>Université du Québec à Chicoutimi</td>
</tr>
<tr>
<td>Héraud</td>
<td>Bernard</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Kamii</td>
<td>Constance</td>
<td>Université d'Alabama à Birmingham</td>
</tr>
<tr>
<td>Lacroix</td>
<td>Jean-Frédéric</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Laflamme</td>
<td>Jacqueline</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Lajoie</td>
<td>Caroline</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Laverdure</td>
<td>Gilles</td>
<td>Commission scolaire des Grandes-Seigneuries</td>
</tr>
<tr>
<td>Lee</td>
<td>Lesley</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Lemoynne</td>
<td>Gisèle</td>
<td>Université de Montréal</td>
</tr>
<tr>
<td>Mary</td>
<td>Claudine</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Morin</td>
<td>Marie-Pier</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Nantais</td>
<td>Nicole</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Odierna</td>
<td>Mélanie</td>
<td>Université de Montréal</td>
</tr>
<tr>
<td>Oktac</td>
<td>Asuman</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Oliveira</td>
<td>Izabella</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Pallascio</td>
<td>Richard</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Petit</td>
<td>Mathieu</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Proulx</td>
<td>Jérôme</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Provencher</td>
<td>Annie</td>
<td>Université Laval</td>
</tr>
<tr>
<td>Provencher</td>
<td>Pauline</td>
<td>?</td>
</tr>
<tr>
<td>Rahmani</td>
<td>Aicha</td>
<td>Université du Québec en Abitibi-Témiscamingue</td>
</tr>
<tr>
<td>Richard</td>
<td>Philippe R.</td>
<td>Université de Montréal</td>
</tr>
<tr>
<td>Saboya</td>
<td>Mireille</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Schmidt</td>
<td>Sylvine</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Squalli</td>
<td>Hassane</td>
<td>Université de Sherbrooke</td>
</tr>
<tr>
<td>Tanguay</td>
<td>Denis</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Traore</td>
<td>Kalifa</td>
<td>Université du Québec à Montréal</td>
</tr>
<tr>
<td>Vincent</td>
<td>Suzanne</td>
<td>Université Laval</td>
</tr>
</tbody>
</table>